Supplement to the Clinical Practice Guideline for the Management of Acute Isolated Meniscal Pathology #### e-Appendix 2 - Quality Evaluation - Data Tables - Meta Analyses This supplementary material has been provided by the authors to give readers additional information about their work #### Table of Contents | Strength of Recommendations | 7 | |---|----| | Quality Appraisal Tables | 8 | | Quality Evaluation: Intervention – Randomized | 8 | | Quality Evaluation: Prognostic/Observational | 10 | | Quality Evaluation: Diagnostic | 11 | | Data Tables: | 14 | | Likelihood Threshold Key | 14 | | PICO 1: Physical Exam | 15 | | Table 1. Mixed Exam | 15 | | Table 2. Joint Line Tenderness | 15 | | Table 3. McMurray Test | 16 | | Table 4. Physical Exam | 17 | | Table 5. Thessaly | 18 | | PICO 2: Imaging Accuracy | 19 | | Table 6. MRI (High Quality) | 19 | | Table 7. MRI (Moderate Quality) | 22 | | Table 8. CT/SPECT/Spiral CT | 30 | | Table 9. Ultrasound | 31 | | Table 10. Arthrography | 34 | | Table 11. Surgery/Arthroscopy | 1 | | PICO 3: Advanced Imaging Utility | 3 | | PICO 4: Tx Indications | 4 | | Figure 1: Operative Tx vs. Non-Operative Tx - Summary of Findings | 4 | | Table 12: Additional Article Details | 5 | | Table 13: Operative Tx vs. Non-operative Tx - Pain | 6 | | Table 14: Operative Tx vs. Non-operative Tx - Return to Activity | 6 | | PICO 5: Injections | 7 | | PICO 6: Physical Therapy | 8 | | Figure 2: PT Modalities vs. PT Modalities – Summary of Findings | 8 | | Table 15: PT Modalities vs. PT Modalities - Function | 9 | | Table 16: PT Modalities vs. PT Modalities - Pain | 9 | | PICO 7: Oral Medication | 10 | | Figure 3: Oral Medication vs. No Oral Medication – Summary of Findings | 10 | |---|----------| | Table 17: Oral Medication vs. No Oral Medication - Function | 11 | | PICO 8: Adjunctive Non-Operative Tx | 12 | | Figure 4: Nerve Stimulation vs. No Treatment/Control – Summary of Findings | 12 | | Table 18: Nerve Stimulation vs. No Treatment/Control - Composite | 13 | | Table 19: Nerve Stimulation vs. No Treatment/Control - Pain | 13 | | PICO 9: Time to Operative Tx | 14 | | Figure 5: Time to Operative Tx/Length of Non-Op Tx vs. Time to Op Tx – Summar Findings | • | | Table 20: Time to Operative Tx/Length of Non-Op Tx vs. Time to Op Tx - Adverse | | | Table 21: Time to Operative Tx/Length of Non-Op Tx vs. Time to Op Tx - Return to Activity | | | PICO 10: Meniscal Repair | 16 | | Figure 6: Meniscus Repair vs. Meniscectomy – Summary of Findings | 16 | | Table 22: Meniscus Repair vs. Meniscectomy - Composite | 17 | | Table 23: Meniscus Repair vs. Meniscectomy - Function | 20 | | Table 24: Meniscus Repair vs. Meniscectomy - Adverse Events | 22 | | Figure 7: Meniscus Repair vs. Control/Non-Repair – Summary of Findings | 24 | | Table 25: Meniscus Repair vs. Control/Non-Repair - Composite | 24 | | PICO 11: All-Inside vs. Inside Out | 25 | | Figure 8: Inside-Out Technique vs. Other Technique – Summary of Findings | 25 | | Table 26: Inside-Out technique vs. Other Technique - Adverse Events | 25 | | PICO 12: Bio-Enhancement | 26 | | Figure 9: Biological Enhancement of Healing vs. Control/No Enhancement – Summ Findings | ary of26 | | Table 27: PRP vs. Control/No Enhancement - Adverse Events | 27 | | Table 28: PRP vs. Control/No Enhancement - Composite | 28 | | Table 29: PRP vs. Control/No Enhancement - Function | 29 | | Table 30: PRP vs. Control/No Enhancement - OA Progression | 30 | | Table 31: PRP vs. Control/No Enhancement - Pain | 30 | | Table 32: PRP vs. Control/No Enhancement - QOL | 31 | | Table 33: BMVP vs. Control/No Enhancement - Adverse Events | 31 | | Table 34: BMVP vs. Control/No Enhancement - Composite | 32 | | Table 35: BMVP vs. Control/No Enhancement - Function | 33 | | | Table 36: BMVP vs. Control/No Enhancement - Pain | . 34 | |----|---|------| | | Table 37: BMVP vs. Control/No Enhancement - QOL | . 34 | | | Figure 10: Biological Enhancement of Healing vs. Each Other – Summary of Findings | . 35 | | | Table 38: PRP vs. Each Other - Adverse Events | . 35 | | ΡI | CO 13: OA Progression | . 36 | | | Figure 11: Risk Factor: Meniscal Tear vs. Control Knee (No Tear) – Summary of Finding | gs | | | | | | | Table 39: Risk Factor: Meniscal Tear vs. Control Knee (No Tear) - OA Progression | . 36 | | | Figure 12: Risk Factor: Meniscectomy vs. Control Knee (No Tear) –Summary of Finding | | | | Table 40: Risk Factor: Meniscectomy vs. Control Knee (No Tear) - OA Progression | . 38 | | | Table 41: Risk Factor: Meniscectomy vs. Control Knee (No Tear) - Other | . 40 | | | Figure 13: Risk Factor – Total Meniscectomy vs. Partial Meniscectomy – Summary of Findings. | 41 | | | Table 42: Risk Factor: Total Meniscectomy vs. Partial Meniscectomy - OA Progression. | . 42 | | | Table 43: Risk Factor: Total Meniscectomy vs. Partial Meniscectomy - Surgery | . 42 | | | Table 44: Risk Factor: Total Meniscectomy vs. Partial Meniscectomy - Other | . 43 | | | Figure 14: Risk Factor: Meniscal Treatment vs. Meniscal Treatment– Summary of Findin | _ | | | Table 45: Risk Factor: Meniscal Treatment vs. Meniscal Treatment - Other | . 45 | | | Table 46: Risk Factor: Meniscal Treatment vs. Meniscal Treatment - OA Progression | . 45 | | | Figure 15: Risk Factor: Repair vs. Control Knee (No Tear) – Summary of Findings | . 46 | | | Table 47: Risk Factor: Repair vs. Control Knee (No Tear) - OA Progression | . 46 | | | Figure 16: Risk Factor: Repair vs. Partial Meniscectomy- Summary of Findings | . 47 | | | Table 48: Risk Factor: Repair vs. Partial Meniscectomy - OA Progression | 47 | | ΡI | CO 14: Rehab | 48 | | | Figure 17: Bracing vs. Control – Summary of Findings 24 | 48 | | | Table 49: Bracing vs. Control - Composite | | | | Table 50: Bracing vs. Control - Function | | | | Table 51: Bracing vs. Control - Pain | . 51 | | | Table 52: Bracing vs. Control - QOL | . 51 | | | Table 53: Bracing vs. Control – Adverse Events | | | | Figure 18: Rehabilitation/Rehabilitation Interventions vs. Control Summary of Findings. | | | | Table 54: Rehabilitation vs. Control - Composite | | | | Table 55: Rehabilitation vs. Control - Function | | | | | | | Table 56: Rehabilitation vs. Control - Other | 60 | |--|----| | Table 57: Rehabilitation vs. Control - Pain | 61 | | Table 58: Rehabilitation vs. Control - QOL | 62 | | Table 59: Rehabilitation vs. Control - Adverse Events | 62 | | Figure 19: Rehabilitation Type vs. Rehabilitation Type - Summary of Findings | 63 | | Table 60: Rehabilitation Type vs. Rehabilitation Type - Adverse Events | 64 | | Table 61: Rehabilitation Type vs. Rehabilitation Type - Composite | 64 | | Table 62: Rehabilitation Type vs. Rehabilitation Type - Function | 65 | | Table 63: Rehabilitation Type vs. Rehabilitation Type - Pain | 67 | | Table 64: Rehabilitation Type vs. Rehabilitation Type - QOL | 67 | | Figure 20: Insole vs. Control – Summary of Findings | 68 | | Table 65: Insole vs. Control - Composite | 69 | | Table 66: Insole vs. Control - Function | 69 | | Table 67: Insole vs. Control - Pain | 70 | | Table 68: Insole vs. Control - QOL | 71 | | PICO 15: Meniscal Augmentation | 72 | | Meta Analyses | 73 | | Likelihood Threshold Key | 73 | | PICO 1 | 74 | | McMurray Test- Statistics (Medial Meniscus) | 74 | | Figure 4 McMurray Test- Positive and Negative Likelihood Ratios (Medial Meniscus). | 74 | | Figure 5 McMurray Test- ROC Curves (Medial Meniscus) | 75 | | McMurray Test- Statistics (Lateral Meniscus) | 76 | | Figure 6 McMurray Test- Positive and Negative Likelihood Ratios (Lateral Meniscus) | 76 | | Figure 7 McMurray Test- ROC Curves (Lateral Meniscus) | 77 | | PICO 2 | 78 | | MRI General Statistics – using arthroscopy as a reference standard | 78 | | Figure 8 MRI General positive and negative likelihood ratios – using arthroscopy as a reference standard | 78 | | Figure 9 MRI General ROC curves – using arthroscopy as a reference standard | 79 | | MRI medial tear statistics | 80 | | Figure 10 MRI medial tear pooled positive and negative likelihood ratios | 80 | | Figure 11 MRI medial tear ROC curve | 81 | | MRI Lateral tear statistics – sensitivity analysis 1 using 2d MRI observation from Arak 1992 study | | | <i></i> | | | Figure 12 MRI lateral tear pooled positive and negative likelihood ratios – sensitivity analysis 1 using 2d MRI observation from Araki 1992 study | . 82 | |---|------| | Figure 13 MRI lateral tear ROC curve – sensitivity analysis 1 using 2d MRI observation from Araki 1992 study | . 83 | | MRI Lateral tear statistics – sensitivity analysis 2 using 3d MRI observation from Araki 1992 study | . 84 | | Figure 14 MRI lateral tear pooled positive and negative likelihood ratios – sensitivity analysis 2 using 3d MRI observation from Araki 1992 study | . 84 | | Figure 15 MRI lateral tear ROC curve – sensitivity analysis 2 using 3d MRI observation from Araki 1992 study | . 85 | | PICO 4 | . 86 | | Bracing - KOOS Pain 1 yr FU | . 86 | # **Strength of Recommendations** | Strength | Overall Strength of
Evidence | Description of Evidence
Quality | |-----------|---------------------------------|--| | Strong | Strong or Moderate | Evidence from two or more "High" quality studies with consistent findings for recommending for or against the intervention. Or Rec is upgrade from Moderate
using the EtD framework. | | Moderate | Strong, Moderate, or Limited | Evidence from two or more "Moderate" quality studies with consistent findings, or evidence from a single "High" quality study for recommending for or against the intervention. Or Rec is upgraded or downgraded from Limited or Strong using the EtD framework. | | Limited | Limited or Moderate | Evidence from two or more "Low" quality studies with consistent findings or evidence from a single "Moderate" quality study recommending for or against the intervention. Or Rec is downgraded from Moderate using the EtD Framework | | Consensus | No Reliable Evidence | There is no supporting evidence, or higher quality evidence was downgraded due to major concerns addressed in the EtD framework. In the absence of reliable evidence, the guideline work group is making a recommendation based on their clinical opinion. | # **Quality Appraisal Tables** #### Quality Evaluation: Intervention – Randomized | Study | Random Sequence Generation | Allocation Concealment | Blinding | Incomplete Outcome Data | Selective Reporting | Other Bias | Strength | |--|----------------------------|------------------------|----------|-------------------------|---------------------|------------|------------------| | Ahrens, P. M., 2017 | • | • | • | • | • | • | High Quality | | Anand, A., 2021 | 0 | 0 | • | • | • | • | Moderate Quality | | Ban, I., 2021 | • | • | 0 | • | • | • | High Quality | | Bhardwaj, A., 2018 | • | • | 0 | • | 0 | • | Moderate Quality | | Calbiyik, M., 2017 | • | • | 0 | 0 | 0 | • | Moderate Quality | | Canadian Orthopaedic Trauma, Society, 2007 | • | • | 0 | 0 | 0 | • | Moderate Quality | | Chen, Q. Y., 2011 | • | • | 0 | 0 | 0 | • | Moderate Quality | | Fuglesang, H. F. S., 2017 | • | • | 0 | • | 0 | • | Moderate Quality | | Fuglesang, H. F. S., 2018 | • | • | • | • | • | 0 | High Quality | | Hulsmans, M. H., 2017 | • | • | 0 | • | 0 | 0 | Moderate Quality | | King, P. R., 2019 | • | 0 | 0 | • | 0 | • | Moderate Quality | | Lubbert, P. H., 2008 | • | • | • | 0 | • | • | High Quality | | Melean, P. A., 2015 | • | 0 | 0 | • | 0 | • | Moderate Quality | | Narsaria, N., 2014 | • | • | • | • | 0 | • | Moderate Quality | | Nicholson, J. A., 2021 | • | • | 0 | • | • | • | Moderate Quality | | Qvist, A. H., 2018 | • | • | • | • | • | • | High Quality | | Rafique, M., 2020 | 0 | 0 | 0 | • | 0 | • | Moderate Quality | | Robinson, C. M., 2013 | • | • | • | • | 0 | 0 | Moderate Quality | | Saha, P., 2014 | 0 | 0 | 0 | • | • | • | Moderate Quality | | Study | Random Sequence Generation | Allocation Concealment | Blinding | Incomplete Outcome Data | Selective Reporting | Other Bias | Strength | |------------------------------|----------------------------|------------------------|----------|-------------------------|---------------------|------------|------------------| | Schemitsch, L. A., 2011 | • | • | 0 | 0 | 0 | 0 | Low Quality | | Smekal, V., 2009 | • | 0 | • | 0 | 0 | 0 | Moderate Quality | | Tamaoki, M. J. S., 2017 | • | • | 0 | • | • | • | High Quality | | van der Meijden, O. A., 2015 | • | 0 | 0 | • | 0 | • | Moderate Quality | | van der Meijden, O. A., 2016 | • | • | • | • | • | • | Moderate Quality | | Wang, H. K., 2020 | • | 0 | • | • | • | • | High Quality | | Woltz, S., 2018 | • | • | • | • | • | • | Moderate Quality | | Woltz, Sarah, 2017 | • | • | 0 | 0 | • | • | Moderate Quality | | Zhang, T., 2019 | 0 | 0 | • | • | 0 | • | Moderate Quality | ## Quality Evaluation: Prognostic/Observational | Study | Patient
Spectrum | Participant
Recruitment | Treatment recording | Confounding Variables | Outcome measurement bias | Incomplete Outcome Data | Adequate Reporting | Strength | |----------------------------|---------------------|----------------------------|---------------------|-----------------------|--------------------------|-------------------------|--------------------|-------------| | Andersson-Molina, H., 2002 | 0 | 0 | | | | | | Low Quality | | Cohen, S. B., 2012 | | • | 0 | • | | • | | Low Quality | | Dai, W. L., 2019 | | 0 | 0 | 0 | | | | Low Quality | | Englund, M., 2003 | | • | | | | 0 | | Low Quality | | Englund, M., 2004 | • | • | | | | 0 | | Low Quality | | Englund, M., 2009 | • | • | | | | | | Low Quality | | Everhart, J. S., 2019 | • | • | 0 | | | | | Low Quality | | Gan, J. Z., 2020 | • | • | 0 | • | • | • | • | Low Quality | | Hulet, C. H., 2001 | • | 0 | 0 | | | 0 | | Low Quality | | Lu, J., 2020 | • | • | 0 | | | | 0 | Low Quality | | Mao, X., 2022 | | • | 0 | 0 | 0 | | | Low Quality | | Marder, R. A., 1994 | | • | 0 | 0 | | | | Low Quality | | Papachristou, G., 2003 | | • | 0 | 0 | • | 0 | | Low Quality | | Pujol, N., 2015 | | • | | | • | | | Low Quality | | Rockborn, P., 1995 | | • | | 0 | | 0 | | Low Quality | | Roos, E. M., 2008 | | • | | • | | 0 | | Low Quality | | Roos, H., 1998 | | 0 | | | | 0 | | Low Quality | | Sochacki, K. R., 2020 | | • | 0 | • | | | | Low Quality | | Stein, T., 2010 | | • | 0 | 0 | | 0 | | Low Quality | | Stone, R. G., 1988 | | • | 0 | | | | | Low Quality | | Taskin, C., 2022 | • | • | 0 | | | 0 | | Low Quality | | Zhang, P., 2018 | | • | 0 | 0 | | • | | Low Quality | | Zhou, Z., 2019 | | 0 | 0 | 0 | | | | Low Quality | ## Quality Evaluation: Diagnostic | Study | Patient selection bias | Index test risk of bias | Reference standard bias | Flow and timing bias | Strength | |---------------------------|------------------------|-------------------------|-------------------------|----------------------|------------------| | Abd Elkhalek, Y. I., 2019 | • | • | • | 0 | Moderate Quality | | Abdon, P., 1989 | 0 | • | • | • | Moderate Quality | | Ahmadi, O., 2022 | • | • | • | • | High Quality | | Alizadeh, A., 2013 | • | • | • | • | High Quality | | Araki, Y., 1992 | • | • | 0 | • | Moderate Quality | | De Smet, A. A., 1994 | • | • | • | • | High Quality | | Dhillon, K. S., 1985 | 0 | • | • | • | Moderate Quality | | Elshimy, A., 2021 | 0 | • | • | • | Moderate Quality | | Evancho, A. M., 1990 | • | • | • | • | Moderate Quality | | Gokalp, G., 2012 | • | • | • | 0 | Moderate Quality | | Goossens, P., 2015 | • | • | • | • | High Quality | | Grevitt, M. P., 1992 | • | • | • | • | High Quality | | Grevitt, M. P., 1993 | • | • | • | • | High Quality | | Habib, E., 2023 | • | • | • | • | Moderate Quality | | Imran, A., 2019 | • | 0 | • | • | Moderate Quality | | Jurik, A. G., 1986 | • | • | • | • | High Quality | | Konan, S., 2009 | 0 | • | • | • | Moderate Quality | | Lohmann, M., 1991 | • | • | • | • | High Quality | | Mackenzie, R., 1995 | • | 0 | 0 | • | Moderate Quality | | Madhusudhan, T. R., 2008 | • | 0 | • | • | Moderate Quality | ^{*}Note: Summary of Findings Tables - Please see full data tables for all times points and sub-category data. | Study | Patient selection bias | Index test risk of bias | Reference standard bias | Flow and timing bias | Strength | |--------------------------|------------------------|-------------------------|-------------------------|----------------------|------------------| | Matava, M. J., 1999 | • | • | | 0 | Moderate Quality | | McNally, E. G., 2002 | • | 0 | 0 | • | Moderate Quality | | Mohan, B. R., 2007 | • | • | 0 | 0 | Moderate Quality | | Muellner, T., 1997 | • | • | • | 0 | Moderate Quality | | Murray, I. P., 1990 | • | • | • | • | High Quality | | Nalaini, F., 2022 | 0 | • | • | • | Moderate Quality | | Nazem, K., 2006 | 0 | • | • | • | High Quality | | Nederveen, D., 1989 | • | • | • | • | High Quality | | Nemec, S. F., 2008 | 0 | • | • | • | Moderate Quality | | Orlando Junior, N., 2015 | • | • | 0 | • | Moderate Quality | | Porter, M., 2021 | • | • | • | • | High Quality | | Rand, T., 1999 | • | • | • | • | High Quality | | Raunest, J., 1991 | • | • | • | 0 | High Quality | | Reicher, M. A., 1986 | 0 | • | 0 | • | Moderate Quality | | Reicher, M. A., 1987 | • | • | • | • | High Quality | | Roper, B. A., 1986 | • | • | 0 | • | Moderate Quality | | Rubin, D. A., 1994 | • | • | • | 0 | High Quality | | Schafer, F. K., 2006 | 0 | • | 0 | • | Moderate Quality | | Shantanu, K., 2021 | • | • | • | • | High Quality | | Shetty, A. A., 2008 | • | • | • | • | High Quality | | Syal, A., 2015 | • | • | • | • | High Quality | | Study | Patient selection bias | Index test risk of bias | Reference standard bias | Flow and timing bias | Strength | |-------------------------|------------------------|-------------------------|-------------------------|----------------------|------------------| | Tahmasebi, M. N., 2005 | • | • | 0 | • | Moderate Quality | | van Heuzen, E. P., 1988 | 0 | • | • | • | Moderate Quality | | Vande Berg, B. C., 2000 | • | • | • | 0 | Moderate Quality | | Wareluk, P., 2012 | • | • | • | • | High Quality | | Yaseen, M. K., 2019 | • | • | • | 0 | Moderate Quality | # Data Tables: # Likelihood Threshold Key | Positive
Likelihood
Ratio | Negative
Likelihood
Ratio | Test
strength | Interpretation | |---------------------------------|---------------------------------|------------------|---| | <u>≥</u> 10 | <u>≤</u> 0.1 | Strong | Large and conclusive change in probability of tear | | ≥5 but <10 | >0.1 but <u><</u> 0.2 | Moderate | Moderate change in probability of tear | | >2 and <5 | >0.2 but <0.5 | Weak | Small (but sometimes important) change in probability of tear | | ≤2 | <u>></u> 0.5 | Poor | Small (and rarely important) change in probability of tear | ## PICO 1: Physical Exam #### Table 1. Mixed Exam | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |--------------------|---------------------|--|---|-----------------------|---------------
------------|-----------------|------------------| | Porter, 2021 | High
Quality | Mean age: 52 yrs; Female: 31.43%; Mean
BMI: NA | Joint Line Tenderness and/or McMurray and/or
an effusion (Required 2 of 3 positive readings:
Lateral Meniscus) | Arthroscopy | 80.20% 98.90% | 72.91 0.2 | STRONG | WEAK | | Porter, 2021 | High
Quality | Mean age: 52 yrs; Female: 31.43%; Mean
BMI: NA | Joint Line Tenderness and/or McMurray and/or
an effusion (Required 2 of 3 positive readings:
Medial Meniscus) | Arthroscopy | 86.10% 99.40% | 143.5 0.14 | STRONG | MODERATE | | Muellner,
1997 | Moderate
Quality | Mean Age: 23.4 yrs; Age Range: (14-38
yrs); Female: 36.8% | Tenderness on Palpation of the Joint Line,
Bohler Test, McMurray Test, Steinmann Test,
Apley Grinding Test, Payr Test (Medial
Meniscus) | Arthroscopy | 100.0% 76.00% | 4.17 0 | WEAK | STRONG | | Muellner,
1997 | Moderate
Quality | Mean Age: 23.4 yrs; Age Range: (14-38
yrs); Female: 36.8% | Tenderness on Palpation of the Joint Line,
Bohler Test, McMurray's Test, Steinmann Test,
Apley Grinding Test, Payr Test | Arthroscopy | 96.50% 87.00% | 7.42 0.04 | MODERATE | STRONG | | Muellner,
1997 | Moderate
Quality | Mean Age: 23.4 yrs; Age Range: (14-38
yrs); Female: 36.8% | Tenderness on Palpation of the Joint Line,
Bohler Test, McMurray's Test, Steinmann Test,
Apley Grinding Test, Payr Test (Lateral
Meniscus) | Arthroscopy | 92.00% 98.00% | 46 0.08 | STRONG | STRONG | #### Table 2. Joint Line Tenderness | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule
Out Test | |--------------------|---------------------|--|---|-----------------------|---------------|------------|-----------------|------------------| | Konan, 2009 | Moderate
Quality | Mean Age: 39 yrs; Age Range: 16-56
yrs; Female: 26.6% | Joint Line Tenderness (Lateral
Meniscus) | Arthroscopy | 68.42% 96.92% | 22.24 0.33 | STRONG | WEAK | | Konan, 2009 | Moderate
Quality | Mean Age: 39 yrs; Age Range: 16-56
yrs; Female: 26.6% | Joint Line Tenderness (Medial
Meniscus) | Arthroscopy | 82.54% 76.19% | 3.47 0.23 | WEAK | WEAK | Table 3. McMurray Test | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |--------------------|---------------------|--|----------------------------------|-----------------------|---------------|-------------|-----------------|------------------| | Goossens,
2015 | High Quality | Mean Age: 49.4 yrs; Female: 42.5% | McMurray Test | Arthroscopy | 70.00% 45.00% | 1.27 0.67 | POOR | POOR | | Goossens,
2015 | High Quality | Mean Age: 49.4 yrs; Female: 42.5% | McMurray test (Lateral Meniscus) | Arthroscopy | 72.00% 34.00% | 1.09 0.82 | POOR | POOR | | Goossens,
2015 | High Quality | Mean Age: 49.4 yrs; Female: 42.5% | McMurray test (Medial Meniscus) | Arthroscopy | 69.00% 37.00% | 1.1 0.84 | POOR | POOR | | Shantanu,
2021 | High Quality | Mean Age: 29.17 yrs; Age Range: (26-
35 yrs); Female 8.3% | McMurray Test (Lateral Meniscus) | Arthroscopy | 87.50% 94.23% | 15.17 0.13 | STRONG | MODERATE | | Shantanu,
2021 | High Quality | Mean Age: 29.17 yrs; Age Range: (26-
35 yrs); Female 8.3% | McMurray Test (Medial Meniscus) | Arthroscopy | 47.37% 97.56% | 19.42 0.54 | STRONG | POOR | | Konan, 2009 | Moderate
Quality | Mean Age: 39 yrs; Age Range: 16-56
yrs; Female: 26.6% | McMurray Test (Lateral Meniscus) | Arthroscopy | 21.05% 93.85% | 3.42 0.84 | WEAK | POOR | | Konan, 2009 | Moderate
Quality | Mean Age: 39 yrs; Age Range: 16-56
yrs; Female: 26.6% | McMurray Test (Medial Meniscus) | Arthroscopy | 50.00% 77.27% | 2.2 0.65 | WEAK | POOR | | Mohan, 2007 | Moderate
Quality | Mean Age: 49 yrs; Age Range: (19-79
yrs); Female: 31% | McMurray Test (Lateral Meniscus) | Arthroscopy | 90.91% 92.59% | 12.27 0.1 | STRONG | STRONG | | Mohan, 2007 | Moderate
Quality | Mean Age: 49 yrs; Age Range: (19-79
yrs); Female: 31% | McMurray Test (Medial Meniscus) | Arthroscopy | 97.78% 65.00% | 2.79 0.03 | WEAK | STRONG | Table 4. Physical Exam | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |-------------------------|---------------------|--|----------------------------------|-----------------------|---------------|------------|-----------------|------------------| | Syal, 2015 | High Quality | Mean Age: (32/29 yrs); Age Range: (9-
58 yrs/15-52 yrs); Female:
(17.8%/11.1%) | Physical Exam (Lateral Meniscus) | Arthroscopy | 53.96% 94.49% | 9.79 0.49 | MODERATE | WEAK | | Syal, 2015 | High Quality | Mean Age: (32/29 yrs); Age Range: (9-
58 yrs/15-52 yrs); Female:
(17.8%/11.1%) | Physical Exam (Medial Meniscus) | Arthroscopy | 91.39% 68.04% | 2.86 0.13 | WEAK | MODERATE | | Dhillon, 1985 | Moderate
Quality | Age Range: (19-39 yrs) | Physical Exam (Lateral Meniscus) | Arthrotomy | 93.33% 0.00% | 0.93 0.38 | POOR | WEAK | | Dhillon, 1985 | Moderate
Quality | Age Range: (19-39 yrs) | Physical Exam (Medial Meniscus) | Arthrotomy | 96.97% 0.00% | 0.97 0.53 | POOR | POOR | | Madhusudhan
, 2008 | Moderate
Quality | Age Range: (18-50 yrs) | Physical Exam | Arthroscopy | 38.75% 93.10% | 5.62 0.66 | MODERATE | POOR | | Orlando
Junior, 2015 | Moderate
Quality | Mean Age: 33.54 yrs; Age Range: (17-
59 yrs); Female: 15.28% | Physical Exam (Lateral Meniscus) | MRI w/
Arthroscopy | 55.60% 97.70% | 24.17 0.45 | STRONG | WEAK | | Orlando
Junior, 2015 | Moderate
Quality | Mean Age: 33.54 yrs; Age Range: (17-
59 yrs); Female: 15.28% | Physical Exam (Lateral Meniscus) | Arthroscopy | 47.82% 93.87% | 7.8 0.56 | MODERATE | POOR | | Orlando
Junior, 2015 | Moderate
Quality | Mean Age: 33.54 yrs; Age Range: (17-
59 yrs); Female: 15.28% | Physical Exam (Medial Meniscus) | MRI w/
Arthroscopy | 96.20% 76.50% | 4.09 0.05 | WEAK | STRONG | | Orlando
Junior, 2015 | Moderate
Quality | Mean Age: 33.54 yrs; Age Range: (17-
59 yrs); Female: 15.28% | Physical Exam (Medial Meniscus) | Arthroscopy | 75.00% 62.00% | 1.97 0.4 | POOR | WEAK | | Yaseen, 2019 | Moderate
Quality | Mean Age: 35.44 yrs; Age Range:
(23.35-47.53 yrs); Female: 28% | Physical Exam | Ultrasound | 83.00% 20.00% | 1.04 0.85 | POOR | POOR | Table 5. Thessaly | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |--------------------|---------------------|---|---|-----------------------|---------------|-------------|-----------------|------------------| | Goossens,
2015 | High Quality | Mean Age: 49.4 yrs; Female: 42.5% | Thessaly Test | Arthroscopy | 64.00% 53.00% | 1.36 0.68 | POOR | POOR | | Goossens,
2015 | High Quality | Mean Age: 49.4 yrs; Female: 42.5% | Thessaly Test (Lateral Meniscus) | Arthroscopy | 64.00% 40.00% | 1.07 0.9 | POOR | POOR | | Goossens,
2015 | High Quality | Mean Age: 49.4 yrs; Female: 42.5% | Thessaly Test (Medial Meniscus) | Arthroscopy | 64.00% 45.00% | 1.16 0.8 | POOR | POOR | | Imran, 2019 | Moderate
Quality | Mean Age: 31.55 yrs; Age Range: (20.72-42.38 yrs); Female: 40.69% | Thessaly Test | MRI | 95.10% 78.90% | 4.51 0.06 | WEAK | STRONG | | Konan, 2009 | Moderate
Quality | Mean Age: 39 yrs; Age Range: 16-56
yrs; Female: 26.6% | Thessaly Test 20° (Lateral
Meniscus) | Arthroscopy | 31.58% 95.08% | 6.42 0.72 | MODERATE | POOR | | Konan, 2009 | Moderate
Quality | Mean Age: 39 yrs; Age Range: 16-56
yrs; Female: 26.6% | Thessaly Test 20° (Medial
Meniscus) | Arthroscopy | 59.32% 66.67% | 1.78 0.61 | POOR | POOR | | Konan, 2009 | Moderate
Quality | Mean Age: 39 yrs; Age Range: 16-56
yrs; Female: 26.6% | Thessaly Test 5° (Lateral Meniscus) | Arthroscopy | 15.79% 88.52% | 1.38 0.95 | POOR | POOR | | Konan, 2009 | Moderate
Quality | Mean Age: 39 yrs; Age Range: 16-56
yrs; Female: 26.6% | Thessaly Test 5° (Medial Meniscus) | Arthroscopy | 41.38% 68.18% | 1.3 0.86 | POOR | POOR | PICO 2: Imaging Accuracy #### Table 6. MRI (High Quality) | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |--------------------|--------------|--|--------------------------------------|-----------------------|-----------------|---------------------|-----------------|------------------| | Alizadeh,
2013 | High Quality | Mean Age: 23.5 yrs; Age Range: (18.5-
28.5 yrs); | MRI | Arthroscopy | 100.0% 88.90% | 9.01 0 | MODERATE | STRONG | | Alizadeh,
2013 | High Quality | Mean Age: 43.5 yrs; Age Range: (34.2-
52.8 yrs) | MRI | Arthroscopy | 96.70% 85.70% | 6.76 0.04 | MODERATE | STRONG | | Grevitt, 1992 | High Quality | Mean Age: 36 yrs; (Age Range: 17-65
yrs); Female: 30.90% | MRI | Arthroscopy | 91.00% 95.00% | 18.2 0.09 | STRONG | STRONG | | Shetty, 2008 | High Quality | Mean Age: 47 yrs; Age Range: (14-73 yrs); Female: 42.8%; | MRI | Arthroscopy | 86.36% 100.0% | 23.74 0.14 | STRONG | MODERATE | | De Smet,
1994 | High Quality | | MRI (Lateral Meniscus) | Arthroscopy | 80.00% 93.00% | 11.43 0.22 | STRONG | WEAK | | Grevitt, 1992 | High Quality | Mean Age: 36 yrs; (Age Range: 17-65
yrs); Female: 30.90% | MRI (Lateral Meniscus) | Arthroscopy | 88.89% 97.83% | 40.89 0.11 | STRONG | MODERATE | | Nazem, 2006 | High Quality | | MRI (Lateral Meniscus) | Arthroscopy | 44.40%
60.00% | 1.11 0.93 | POOR | POOR | | Nederveen,
1989 | High Quality | Mean Age: 34 yrs; (Age Range: 21-62
yrs); Female: 0% | MRI (Lateral Meniscus) | Arthroscopy | 100.0% 61.54% | 2.6 0 | WEAK | STRONG | | Raunest, 1991 | High Quality | Mean Age: 40.9 yrs; Age Range: (16-
69 yrs); Female: 28% | MRI (Lateral Meniscus) | Arthroscopy | 77.78% 68.75% | 2.49 0.32 | WEAK | WEAK | | Reicher, 1987 | High Quality | (Age Range: 14-66 yrs) | MRI (Lateral Meniscus) | Arthroscopy | 75.00% 83.87% | 4.65 0.3 | WEAK | WEAK | | Shantanu,
2021 | High Quality | Mean Age: 29.17 yrs; Age Range: (26-
35 yrs); Female 8.3% | MRI (Lateral Meniscus) | Arthroscopy | 87.50% 94.23% | 15.17 0.13 | STRONG | MODERATE | | Syal, 2015 | High Quality | Mean Age: (32/29 yrs); Age Range: (9-
58 yrs/15-52 yrs); Female:
(17.8%/11.1%) | MRI (Lateral Meniscus) | Arthroscopy | 55.00% 90.00% | 5.5 0.5 | MODERATE | WEAK | | Reicher, 1987 | High Quality | (Age Range: 14-66 yrs) | MRI (Lateral Meniscus; Grade 1 or 2) | Arthroscopy | . 100.0% | Unable to calculate | | | | Reicher, 1987 | High Quality | (Age Range: 14-66 yrs) | MRI (Lateral Meniscus; Grade 3) | Arthroscopy | 100.0% . | Unable to calculate | | | | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |--------------------|--------------|--|--|-------------------------|---------------|---------------------|-----------------|------------------| | Reicher, 1987 | High Quality | (Age Range: 14-66 yrs) | MRI (Lateral Meniscus; Grade 4) | Arthroscopy | 100.0% . | Unable to calculate | | | | De Smet,
1994 | High Quality | | MRI (Medial Meniscus) | Arthroscopy | 93.00% 87.00% | 7.15 0.08 | MODERATE | STRONG | | Grevitt, 1992 | High Quality | Mean Age: 36 yrs; (Age Range: 17-65 yrs); Female: 30.90% | MRI (Medial Meniscus) | Arthroscopy | 92.00% 90.00% | 9.2 0.09 | MODERATE | STRONG | | Nazem, 2006 | High Quality | | MRI (Medial Meniscus) | Arthroscopy | 57.10% 60.00% | 1.43 0.72 | POOR | POOR | | Nederveen,
1989 | High Quality | Mean Age: 34 yrs; (Age Range: 21-62
yrs); Female: 0% | MRI (Medial Meniscus) | Arthroscopy | 100.0% 71.43% | 3.5 0 | WEAK | STRONG | | Raunest, 1991 | High Quality | Mean Age: 40.9 yrs; Age Range: (16-
69 yrs); Female: 28% | MRI (Medial Meniscus) | Arthroscopy | 93.55% 36.84% | 1.48 0.18 | POOR | MODERATE | | Reicher, 1987 | High Quality | (Age Range: 14-66 yrs) | MRI (Medial Meniscus) | Arthroscopy | 80.00% 100.0% | 26.98 0.2 | STRONG | MODERATE | | Shantanu,
2021 | High Quality | Mean Age: 29.17 yrs; Age Range: (26-
35 yrs); Female 8.3% | MRI (Medial Meniscus) | Arthroscopy | 89.47% 85.37% | 6.11 0.12 | MODERATE | MODERATE | | Syal, 2015 | High Quality | Mean Age: (32/29 yrs); Age Range: (9-
58 yrs/15-52 yrs); Female:
(17.8%/11.1%) | MRI (Medial Meniscus) | Arthroscopy | 76.59% 72.91% | 2.83 0.32 | WEAK | WEAK | | Reicher, 1987 | High Quality | (Age Range: 14-66 yrs) | MRI (Medial Meniscus; Grade 1 or 2) | Arthroscopy | . 100.0% | Unable to calculate | | | | Reicher, 1987 | High Quality | (Age Range: 14-66 yrs) | MRI (Medial Meniscus; Grade 3) | Arthroscopy | 100.0% . | Unable to calculate | | | | Reicher, 1987 | High Quality | (Age Range: 14-66 yrs) | MRI (Medial Meniscus; Grade 4) | Arthroscopy | 100.0% . | Unable to calculate | | | | Porter, 2021 | High Quality | Mean age: 52 yrs; Female: 31.43%;
Mean BMI: NA | MRI performed on a 1.5T or 3T
MRI machine with standard MRI
sequences (Lateral Meniscus) | Arthroscopy | 79.80% 70.40% | 2.7 0.29 | WEAK | WEAK | | Porter, 2021 | High Quality | Mean age: 52 yrs; Female: 31.43%;
Mean BMI: NA | MRI performed on a 1.5T or 3T
MRI machine with standard MRI
sequences (Medial Meniscus) | Arthroscopy | 88.30% 95.10% | 18.02 0.12 | STRONG | MODERATE | | Rand, 1999 | High Quality | Mean Age: 35.5 yrs; Female: 44% | MRI (Low Field MRI) | MRI (High Field
MRI) | 75.00% 100.0% | 28.89 0.25 | STRONG | WEAK | | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |--------------------|--------------|--|---|---|---------------|---------------------|-----------------|------------------| | Rubin, 1994 | High Quality | Mean Age: 37 yrs; (Age Range: 11-73
yrs); Female: 50% | MRI (Fast spin-echo imaging) | MRI
Conventional
spin-echo
imaging | 65.22% 96.39% | 18.04 0.36 | STRONG | WEAK | | Rubin, 1994 | High Quality | Mean Age: 37 yrs; (Age Range: 11-73
yrs); Female: 50% | MRI (Fast spin-echo imaging; Echo
time TE1-13; Echo Time TE2-65; E-
Space-13; Echo-train length ETL-6;
Timing Parameter: 3 min 25 sec) | MRI
Conventional
spin-echo
imaging | 64.29% . | Unable to calculate | | | | Rubin, 1994 | High Quality | Mean Age: 37 yrs; (Age Range: 11-73
yrs); Female: 50% | MRI (Fast spin-echo imaging; Echo
time TE1-16; Echo Time TE2-64; E-
Space-16; Echo-train length ETL-4;
Timing Parameter: 4 min 5 sec) | MRI
Conventional
spin-echo
imaging | 65.63% . | Unable to calculate | | | Table 7. MRI (Moderate Quality) | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |-----------------------|---------------------|---|--|-----------------------|---------------|---------------------|-----------------|------------------| | Habib, 2023 | Moderate
Quality | Mean Age: 31 yrs; (Age
Range 14-56 yrs); Female:
4% | 0.3 T MRI (Lateral Meniscus) | Arthroscopy | 96.00% 96.00% | 24 0.04 | STRONG | STRONG | | Habib, 2023 | Moderate
Quality | Mean Age: 31 yrs; (Age
Range 14-56 yrs); Female:
4% | 0.3 T MRI (Medial Meniscus) | Arthroscopy | 97.62% 87.50% | 7.81 0.03 | MODERATE | STRONG | | Mackenzie,
1995 | Moderate
Quality | | 1.5 T MRI | Arthroscopy | 79.07% 94.26% | 13.78 0.22 | STRONG | WEAK | | Mackenzie,
1995 | Moderate
Quality | | 1.5 T MRI (Lateral Meniscus) | Arthroscopy | 60.00% 100.0% | 86.69 0.4 | STRONG | WEAK | | Matava, 1999 | Moderate
Quality | Mean Age: 35 yrs; (Age
Range: 6-78 yrs); Female:
42.45% | 1.5 T MRI (Lateral meniscus) | Arthroscopy | 84.00% 95.00% | 16.8 0.17 | STRONG | MODERATE | | Mackenzie,
1995 | Moderate
Quality | | 1.5 T MRI (Medial Meniscus) | Arthroscopy | 89.29% 86.00% | 6.38 0.12 | MODERATE | MODERATE | | Matava, 1999 | Moderate
Quality | Mean Age: 35 yrs; (Age
Range: 6-78 yrs); Female:
42.45% | 1.5 T MRI (Medial meniscus) | Arthroscopy | 91.00% 92.00% | 11.38 0.1 | STRONG | STRONG | | Nemec, 2008 | Moderate
Quality | Mean Age: 38.3 yrs; Age
Range: (18-55 yrs); Female:
44% | High-Resolution MRI (Medial
Meniscus) | Arthroscopy | 88.00% . | Unable to calculate | | | | Abd Elkhalek,
2019 | Moderate
Quality | Mean Age: 35 yrs; Age
Range: (30-48 yrs); Female:
32% | MRI | Arthroscopy | 96.30% 100.0% | . 0.04 | | STRONG | | Elshimy, 2021 | Moderate
Quality | Mean Age: 32.9 yrs; (Age
Range: 18-60 Yrs); Female
25% | MRI | Arthroscopy | 90.50% 83.30% | 5.42 0.11 | MODERATE | MODERATE | | Madhusudhan,
2008 | Moderate
Quality | Age Range: (18-50 yrs) | MRI | Arthroscopy | 59.00% 50.00% | 1.18 0.82 | POOR | POOR | | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |---------------------|---------------------|--|--|-----------------------|---------------|--------------|-----------------|------------------| | McNally, 2002 | Moderate
Quality | Mean Age: 27 yrs; Age
Range: (12-50 yrs); Female:
23% | MRI | Arthroscopy | 96.00% 100.0% | . 0.04 | | STRONG | | Muellner,
1997 | Moderate
Quality | Mean Age: 21.9 yrs; Age
Range: (15-39 yrs); Female:
33.3% | MRI | Arthroscopy | 98.00% 85.50% | 6.76 0.02 | MODERATE | STRONG | | Tahmasebi,
2005 | Moderate
Quality | Mean Age: 31 yrs; Age
Range: (15-52 yrs); Female:
18.7% | MRI | Arthroscopy | 89.00% 94.00% | 14.83 0.12 | STRONG | MODERATE | | van Heuzen,
1988 | Moderate
Quality | Median Age: 28 yrs; (Age
Range: 14 to 58 yrs);
Female: 16% | MRI | Arthroscopy | 100.0% 25.00% | 1.33 0 | POOR | STRONG | | Araki, 1992 | Moderate
Quality | Mean Age: 31 yrs; (Age
Range: 13-57 yrs); Female:
54.05% | MRI (2-D images) | Arthroscopy | 81.82% 100.0% | 77.65 0.18 | STRONG | MODERATE | | Araki, 1992 | Moderate
Quality | Mean Age: 31 yrs; (Age
Range: 13-57 yrs); Female:
54.05% | MRI (2-D images) (Lateral Meniscus) | Arthroscopy | 69.23% 100.0% | 38 0.31 | STRONG | WEAK | | Araki, 1992 | Moderate
Quality | Mean Age: 31 yrs; (Age
Range: 13-57 yrs); Female:
54.05% | MRI (2-D images) (Medial Meniscus) | Arthroscopy | 90.00% 100.0% | 37 0.1 | STRONG | STRONG | | Araki, 1992 | Moderate
Quality | Mean Age: 31 yrs; (Age
Range: 13-57 yrs); Female:
54.05% | MRI (3-D Fourier transform, gradient
refocused acquisition in the steady
state [GRASS] pulse sequence; Axial 3-
D imaging (Lateral meniscus)) | Arthroscopy | 100.0% 100.0% | 54 0 | STRONG | STRONG | | Araki, 1992 | Moderate
Quality | Mean Age: 31 yrs; (Age
Range: 13-57 yrs); Female:
54.05% | MRI (3-D Fourier
transform, gradient
refocused acquisition in the steady
state [GRASS] pulse sequence; Axial 3-
D imaging (Medial Meniscus) | Arthroscopy | 95.00% 90.00% | 9.5 0.06 | MODERATE | STRONG | | Araki, 1992 | Moderate
Quality | Mean Age: 31 yrs; (Age
Range: 13-57 yrs); Female:
54.05% | MRI (3-D Fourier transform, gradient
refocused acquisition in the steady
state [GRASS] pulse sequence; Axial 3-
D imaging) | Arthroscopy | 96.97% 95.74% | 22.79 0.03 | STRONG | STRONG | | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |-------------------------|---------------------|---|---|-----------------------|---------------|---------------------|-----------------|------------------| | Araki, 1992 | Moderate
Quality | Mean Age: 31 yrs; (Age
Range: 13-57 yrs); Female:
54.05% | MRI (Combination of both 2D and 3D images) | Arthroscopy | 100.0% 100.0% | . 0 | | STRONG | | Elshimy, 2021 | Moderate
Quality | Mean Age: 32.9 yrs; (Age
Range: 18-60 yrs); Female
25% | MRI (Lateral Meniscus) | Arthroscopy | 90.00% 98.00% | 45 0.1 | STRONG | MODERATE | | Muellner,
1997 | Moderate
Quality | Mean Age: 21.9 yrs; Age
Range: (15-39 yrs); Female:
33.3% | MRI (Lateral Meniscus) | Arthroscopy | 100.0% 100.0% | . 0 | | STRONG | | Orlando
Junior, 2015 | Moderate
Quality | Mean Age: 33.54 yrs; Age
Range: (17-59 yrs); Female:
15.28% | MRI (Lateral Meniscus) | Arthroscopy | 65.00% 88.46% | 5.63 0.4 | MODERATE | WEAK | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Lateral Meniscus) | Arthroscopy | 77.78% 87.50% | 6.22 0.25 | MODERATE | WEAK | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Lateral Meniscus; Grade 1 or 2) | Arthroscopy | . 100.0% | Unable to calculate | | | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Lateral Meniscus; Grade 1 or 2;
Anterior half) | Arthroscopy | . 100.0% | Unable to calculate | | | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Lateral Meniscus; Grade 1 or 2;
Posterior half) | Arthroscopy | . 100.0% | Unable to calculate | | | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Lateral Meniscus; Grade 3) | Arthroscopy | 100.0% . | Unable to calculate | | | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Lateral Meniscus; Grade 3;
Posterior half) | Arthroscopy | 100.0% . | Unable to calculate | | | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Lateral Meniscus; Grade 4) | Arthroscopy | 100.0% . | Unable to calculate | | | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Lateral Meniscus; Grade 4;
Anterior half) | Arthroscopy | 100.0% . | Unable to calculate | | | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Lateral Meniscus; Grade 4;
Posterior half) | Arthroscopy | 100.0% . | Unable to calculate | | | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Lateral, Anterior Half Meniscus) | Arthroscopy | 100.0% 86.96% | 7.67 0 | MODERATE | STRONG | | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |-------------------------|---------------------|---|--|-----------------------|---------------|---------------------|-----------------|------------------| | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Lateral, Posterior Half Meniscus) | Arthroscopy | 77.78% 87.50% | 6.22 0.25 | MODERATE | WEAK | | Elshimy, 2021 | Moderate
Quality | Mean Age: 32.9 yrs; (Age
Range: 18-60 yrs); Female
25% | MRI (Medial Meniscus) | Arthroscopy | 96.67% 92.86% | 13.53 0.04 | STRONG | STRONG | | Muellner,
1997 | Moderate
Quality | Mean Age: 21.9 yrs; Age
Range: (15-39 yrs); Female:
33.3% | MRI (Medial Meniscus) | Arthroscopy | 96.00% 71.00% | 3.31 0.06 | WEAK | STRONG | | Nemec, 2008 | Moderate
Quality | Mean Age: 38.3 yrs; Age
Range: (18-55 yrs); Female:
44% | MRI (Medial Meniscus) | Arthroscopy | 76.00% . | Unable to calculate | | | | Orlando
Junior, 2015 | Moderate
Quality | Mean Age: 33.54 yrs; Age
Range: (17-59 yrs); Female:
15.28% | MRI (Medial Meniscus) | Arthroscopy | 92.50% 74.19% | 3.58 0.1 | WEAK | MODERATE | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Medial Meniscus) | Arthroscopy | 100.0% 58.82% | 2.43 0 | WEAK | STRONG | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Medial Meniscus; Grade 1 or 2) | Arthroscopy | . 100.0% | Unable to calculate | | | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Medial Meniscus; Grade 1 or 2;
Anterior half) | Arthroscopy | . 100.0% | Unable to calculate | | | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Medial Meniscus; Grade 1 or 2;
Posterior half) | Arthroscopy | . 100.0% | Unable to calculate | | | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Medial Meniscus; Grade 3) | Arthroscopy | 100.0% . | Unable to calculate | | | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Medial Meniscus; Grade 3;
Posterior half) | Arthroscopy | 100.0% . | Unable to calculate | | | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Medial Meniscus; Grade 4) | Arthroscopy | 100.0% . | Unable to calculate | | | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Medial Meniscus; Grade 4;
Anterior half) | Arthroscopy | 100.0% . | Unable to calculate | | | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Medial Meniscus; Grade 4;
Posterior half) | Arthroscopy | 100.0% . | Unable to calculate | | | | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |--------------------|---------------------|--|---|-----------------------|---------------|---------------------|-----------------|------------------| | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Medial, Anterior Half Meniscus) | Arthroscopy | 66.67% 100.0% | 48.75 0.33 | STRONG | WEAK | | Reicher, 1986 | Moderate
Quality | (Age Range: 14-66 yrs);
Female: 24% | MRI (Medial, Posterior Half Meniscus) | Arthroscopy | 100.0% 58.82% | 2.43 0 | WEAK | STRONG | | Evancho, 1990 | Moderate
Quality | | MRI 2eT2 sequence (Lateral Meniscus
Grade 1) | Arthroscopy | . 100.0% | Unable to calculate | | | | Evancho, 1990 | Moderate
Quality | | MRI 2eT2 sequence (Lateral Meniscus
Grade 2) | Arthroscopy | . 100.0% | Unable to calculate | | | | Evancho, 1990 | Moderate
Quality | | MRI 2eT2 sequence (Lateral Meniscus
Grade 2d) | Arthroscopy | . 100.0% | Unable to calculate | | | | Evancho, 1990 | Moderate
Quality | | MRI 2eT2 sequence (Lateral Meniscus
Grade 3) | Arthroscopy | 100.0% . | Unable to calculate | | | | Evancho, 1990 | Moderate
Quality | | MRI 2eT2 sequence (Lateral Meniscus) | Arthroscopy | 50.00% 100.0% | 18 0.5 | STRONG | WEAK | | Evancho, 1990 | Moderate
Quality | | MRI 2eT2 sequence (Medial Meniscus
Grade 1) | Arthroscopy | . 100.0% | Unable to calculate | | | | Evancho, 1990 | Moderate
Quality | | MRI 2eT2 sequence (Medial Meniscus
Grade 2) | Arthroscopy | . 100.0% | Unable to calculate | | | | Evancho, 1990 | Moderate
Quality | | MRI 2eT2 sequence (Medial Meniscus
Grade 2d) | Arthroscopy | . 100.0% | Unable to calculate | | | | Evancho, 1990 | Moderate
Quality | | MRI 2eT2 sequence (Medial Meniscus
Grade 3) | Arthroscopy | 100.0% . | Unable to calculate | | | | Evancho, 1990 | Moderate
Quality | | MRI 2eT2 sequence (Medial Meniscus) | Arthroscopy | 83.33% 81.82% | 4.58 0.2 | WEAK | WEAK | | Evancho, 1990 | Moderate
Quality | | MRI oblique (10 degree to 20 degree)
sagittal plane, 2eT2 weighted spin echo
pulse sequence | Arthroscopy | 72.22% 92.86% | 10.11 0.3 | STRONG | WEAK | | Evancho, 1990 | Moderate
Quality | | MRI oblique (10 degree to 20 degree) sagittal plane, T1 weighted spin echo pulse sequence | Arthroscopy | 77.78% 92.86% | 10.89 0.24 | STRONG | WEAK | | Evancho, 1990 | Moderate
Quality | | MRI T1 sequence (Lateral Meniscus
Grade 1) | Arthroscopy | . 100.0% | Unable to calculate | | | | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |--------------------|---------------------|--|---|-----------------------|---------------|---------------------|-----------------|------------------| | Evancho, 1990 | Moderate
Quality | | MRI T1 sequence (Lateral Meniscus
Grade 2) | Arthroscopy | . 100.0% | Unable to calculate | | | | Evancho, 1990 | Moderate
Quality | | MRI T1 sequence (Lateral Meniscus
Grade 2d) | Arthroscopy | . 100.0% | Unable to calculate | | | | Evancho, 1990 | Moderate
Quality | | MRI T1 sequence (Lateral Meniscus
Grade 3) | Arthroscopy | 100.0% . | Unable to calculate | | | | Evancho, 1990 | Moderate
Quality | |
MRI T1 sequence (Lateral Meniscus) | Arthroscopy | 66.67% 100.0% | 23.14 0.33 | STRONG | WEAK | | Evancho, 1990 | Moderate
Quality | | MRI T1 sequence (Medial Meniscus
Grade 1) | Arthroscopy | . 100.0% | Unable to calculate | | | | Evancho, 1990 | Moderate
Quality | | MRI T1 sequence (Medial Meniscus
Grade 2) | Arthroscopy | . 100.0% | Unable to calculate | | | | Evancho, 1990 | Moderate
Quality | | MRI T1 sequence (Medial Meniscus
Grade 2d) | Arthroscopy | . 100.0% | Unable to calculate | | | | Evancho, 1990 | Moderate
Quality | | MRI T1 sequence (Medial Meniscus
Grade 3) | Arthroscopy | 100.0% . | Unable to calculate | | | | Evancho, 1990 | Moderate
Quality | | MRI T1 sequence (Medial Meniscus) | Arthroscopy | 83.33% 81.82% | 4.58 0.2 | WEAK | WEAK | | Gokalp, 2012 | Moderate
Quality | Age Range: (18-62 yrs);
Female: 29.3% | MRI; Axial Images (Lateral
Meniscus/Flap Tear) | Arthroscopy | 100.0% 100.0% | . 0 | | STRONG | | Gokalp, 2012 | Moderate
Quality | Age Range: (18-62 yrs);
Female: 29.3% | MRI; Axial Images (Lateral
Meniscus/Horizontal Tear) | Arthroscopy | 100.0% 100.0% | . 0 | | STRONG | | Gokalp, 2012 | Moderate
Quality | Age Range: (18-62 yrs);
Female: 29.3% | MRI; Axial Images (Lateral
Meniscus/Longitudinal Tear) | Arthroscopy | 100.0% 100.0% | . 0 | | STRONG | | Gokalp, 2012 | Moderate
Quality | Age Range: (18-62 yrs);
Female: 29.3% | MRI; Axial Images (Lateral
Meniscus/Radial Tear) | Arthroscopy | 100.0% 100.0% | . 0 | | STRONG | | Gokalp, 2012 | Moderate
Quality | Age Range: (18-62 yrs);
Female: 29.3% | MRI; Axial Images (Medial
Meniscus/Bucket-Handle Tear) | Arthroscopy | 100.0% 96.55% | 28.99 0 | STRONG | STRONG | | Gokalp, 2012 | Moderate
Quality | Age Range: (18-62 yrs);
Female: 29.3% | MRI; Axial Images (Medial
Meniscus/Flap Tear) | Arthroscopy | 81.82% 92.00% | 10.23 0.2 | STRONG | MODERATE | | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |--------------------|---------------------|---|--|-----------------------|---------------|-------------|-----------------|------------------| | Gokalp, 2012 | Moderate
Quality | Age Range: (18-62 yrs);
Female: 29.3% | MRI; Axial Images (Medial
Meniscus/Horizontal Tear) | Arthroscopy | 75.00% 96.87% | 23.96 0.26 | STRONG | WEAK | | Gokalp, 2012 | Moderate
Quality | Age Range: (18-62 yrs);
Female: 29.3% | MRI; Axial Images (Medial
Meniscus/Longitudinal Tear) | Arthroscopy | 90.91% 88.00% | 7.58 0.1 | MODERATE | MODERATE | | Gokalp, 2012 | Moderate
Quality | Age Range: (18-62 yrs);
Female: 29.3% | MRI; Axial Images (Medial
Meniscus/Radial Tear) | Arthroscopy | 66.66% 96.87% | 21.3 0.34 | STRONG | WEAK | | Gokalp, 2012 | Moderate
Quality | Age Range: (18-62 yrs);
Female: 29.3% | MRI; Axial PDW Images (Lateral
Meniscus) | Arthroscopy | 95.65% 80.50% | 4.91 0.05 | WEAK | STRONG | | Gokalp, 2012 | Moderate
Quality | Age Range: (18-62 yrs);
Female: 29.3% | MRI; Axial PDW Images (Medial
Meniscus) | Arthroscopy | 97.30% 84.00% | 6.08 0.03 | MODERATE | STRONG | | Nalaini, 2022 | Moderate
Quality | Mean Age: 33 yrs; Age
Range: (13-68 yrs); Female:
47.8% | MRI; CSE PD | Arthroscopy | 88.06% 97.01% | 29.45 0.12 | STRONG | MODERATE | | Nalaini, 2022 | Moderate
Quality | Mean Age: 33 yrs; Age
Range: (13-68 yrs); Female:
47.8% | MRI; CSE PD (Lateral Meniscus) | Arthroscopy | 91.67% 98.18% | 50.42 0.08 | STRONG | STRONG | | Nalaini, 2022 | Moderate
Quality | Mean Age: 33 yrs; Age
Range: (13-68 yrs); Female:
47.8% | MRI; CSE PD (Medial Meniscus) | Arthroscopy | 90.00% 41.67% | 1.54 0.24 | POOR | WEAK | | Nalaini, 2022 | Moderate
Quality | Mean Age: 33 yrs; Age
Range: (13-68 yrs); Female:
47.8% | MRI; FSE PD | Arthroscopy | 87.88% 69.12% | 2.85 0.18 | WEAK | MODERATE | | Nalaini, 2022 | Moderate
Quality | Mean Age: 33 yrs; Age
Range: (13-68 yrs); Female:
47.8% | MRI; FSE PD (Lateral Meniscus) | Arthroscopy | 75.00% 94.55% | 13.75 0.26 | STRONG | WEAK | | Nalaini, 2022 | Moderate
Quality | Mean Age: 33 yrs; Age
Range: (13-68 yrs); Female:
47.8% | MRI; FSE PD (Medial Meniscus) | Arthroscopy | 84.44% 77.27% | 3.72 0.2 | WEAK | WEAK | | Schafer, 2006 | Moderate
Quality | Mean Age: 40.5 yrs; Age
Range: (13-80 yrs); Female:
48.3% | MRI; Sagittal and Coronal PD FS-TSE | Arthroscopy | 90.00% 98.50% | 60 0.1 | STRONG | MODERATE | | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |--------------------|---------------------|---|--|-----------------------|---------------|------------|-----------------|------------------| | Schafer, 2006 | Moderate
Quality | Mean Age: 40.5 yrs; Age
Range: (13-80 yrs); Female:
48.3% | MRI; Sagittal and Coronal PD FS-TSE
(Lateral Meniscus) | Arthroscopy | 90.00% 98.30% | 52.94 0.1 | STRONG | MODERATE | | Schafer, 2006 | Moderate
Quality | Mean Age: 40.5 yrs; Age
Range: (13-80 yrs); Female:
48.3% | MRI; Sagittal and Coronal PD FS-TSE
(Medial Meniscus) | Arthroscopy | 91.40% 98.60% | 65.29 0.09 | STRONG | STRONG | | Gokalp, 2012 | Moderate
Quality | Age Range: (18-62 yrs);
Female: 29.3% | MRI; Sagittal FS PDW Images (Lateral
Meniscus) | Arthroscopy | 72.73% 77.14% | 3.18 0.35 | WEAK | WEAK | | Gokalp, 2012 | Moderate
Quality | Age Range: (18-62 yrs);
Female: 29.3% | MRI; Sagittal FS PDW Images (Medial
Meniscus) | Arthroscopy | 90.62% 70.37% | 3.06 0.13 | WEAK | MODERATE | | Schafer, 2006 | Moderate
Quality | Mean Age: 40.5 yrs; Age
Range: (13-80 yrs); Female:
48.3% | MRI; Sagittal PD TSE + Coronal T1 SE | Arthroscopy | 89.10% 96.90% | 28.74 0.11 | STRONG | MODERATE | | Schafer, 2006 | Moderate
Quality | Mean Age: 40.5 yrs; Age
Range: (13-80 yrs); Female:
48.3% | MRI; Sagittal PD TSE + Coronal T1 SE
(Lateral Meniscus) | Arthroscopy | 90.00% 95.90% | 21.95 0.1 | STRONG | MODERATE | | Schafer, 2006 | Moderate
Quality | Mean Age: 40.5 yrs; Age
Range: (13-80 yrs); Female:
48.3% | MRI; Sagittal PD TSE + Coronal T1 SE
(Medial Meniscus) | Arthroscopy | 88.60% 98.30% | 52.12 0.12 | STRONG | MODERATE | Table 8. CT/SPECT/Spiral CT | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |---------------------|---------------------|---|--|-----------------------|---------------|-------------|-----------------|------------------| | Jurik, 1986 | High Quality | Mean Age: 32 yrs; Age
Range: (15-56 yrs); Female:
40% | CT (Lateral Meniscus) | Arthrography | 95.00% 80.00% | 4.75 0.06 | WEAK | STRONG | | Jurik, 1986 | High Quality | Mean Age: 32 yrs; Age
Range: (15-56 yrs); Female:
40% Right Knee: 56% | CT (Medial Meniscus) | Arthrography | 92.00% 85.00% | 6.13 0.09 | MODERATE | STRONG | | Grevitt, 1993 | High Quality | Mean Age: 32 yrs; (Age
Range: 17-50 yrs); Female:
26.67% | SPECT | Arthroscopy | 76.92% 73.91% | 2.95 0.31 | WEAK | WEAK | | Lohmann,
1991 | High Quality | Median Age: 36 yrs; (Age
Range: 18 to 44 yrs);
Female: 34% | SPECT | Arthroscopy | 73.91% 76.19% | 3.1 0.34 | WEAK | WEAK | | Murray, 1990 | High Quality | Female: 15.68% | SPECT | Arthroscopy | 87.88% 87.23% | 6.88 0.14 | MODERATE | MODERATE | | Murray, 1990 | High Quality | Female: 15.68% | SPECT (Lateral meniscus) | Arthroscopy | 75.00% 87.00% | 5.77 0.29 | MODERATE | WEAK | | Murray, 1990 | High Quality | Female: 15.68% | SPECT (Medial + Lateral Meniscus) | Arthroscopy | 88.00% 87.00% | 6.77 0.14 | MODERATE | MODERATE | | Murray, 1990 | High Quality | Female: 15.68% | SPECT (Medial meniscus) | Arthroscopy | 86.67% 87.00% | 6.67 0.15 | MODERATE | MODERATE | | Grevitt, 1993 | High Quality | Mean Age: 32 yrs; (Age
Range: 17-50 yrs); Female:
26.67% | SPECT (with scintigraphic abnormalities such as intense focal uptake included as criteria for diagnosing meniscal tears) | Arthroscopy | 90.00% 74.00% | 3.46 0.14 | WEAK | MODERATE | | Tahmasebi,
2005 | Moderate
Quality | Mean Age: 31 yrs; Age
Range: (15-52 yrs); Female:
18.7% | SPECT | Arthroscopy | 78.00% 94.00% | 13 0.23 | STRONG | WEAK | | Vande Berg,
2000 | Moderate
Quality | Mean Age: 44.9 yrs; Age
Range: (23-77 yrs); Median
Age: 40 yrs; Female: 20% | Spiral CT | Arthroscopy | 97.00% 90.00% | 9.7 0.03 | MODERATE | STRONG | Table 9. Ultrasound | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |--------------------|--------------|--|--|-----------------------|---------------|-----------|-----------------|------------------| | Ahmadi, 2022 | High Quality | Mean Age: 35.48 yrs;
Female: 30.9%; | Ultrasound (POCUS); Philips Affiniti
50G ultrasound machine with L 12-5
Linear probe (5-12MHz) | MRI | 86.96% 71.88% | 3.09 0.18 | WEAK | MODERATE | | Alizadeh,
2013 | High Quality | Mean Age: 43.5 yrs; Age
Range: (34.2-52.8 yrs) | Ultrasound | Arthroscopy | 83.30% 71.40% | 2.91 0.23 | WEAK | WEAK | | Alizadeh,
2013 | High Quality | Mean Age: 23.5 yrs; Age
Range: (18.5-28.5 yrs); | Ultrasound | Arthroscopy | 100.0% 88.90% | 9.01 0 | MODERATE | STRONG | | Shetty, 2008 | High
Quality | Mean Age: 47 yrs; Age
Range: (14-73 yrs); Female:
42.8%; | Ultrasound | Arthroscopy | 86.36% 69.23% | 2.81 0.2 | WEAK | MODERATE | | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe | Arthroscopy | 85.40% 85.70% | 5.97 0.17 | MODERATE | MODERATE | | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe | Arthroscopy | 95.70% 82.20% | 5.38 0.05 | MODERATE | STRONG | | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe | Arthroscopy | 72.20% 91.30% | 8.3 0.3 | MODERATE | WEAK | | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe | Arthroscopy | 90.90% 84.80% | 5.98 0.11 | MODERATE | MODERATE | | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe | Arthroscopy | 78.90% 86.80% | 5.98 0.24 | MODERATE | WEAK | | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe | Arthroscopy | 83.30% 84.60% | 5.41 0.2 | MODERATE | MODERATE | | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |--------------------|--------------|--|--|-----------------------|---------------|--------------|-----------------|------------------| | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe | Arthroscopy | 85.70% 80.00% | 4.29 0.18 | WEAK | MODERATE | | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe | Arthroscopy | 83.30% 95.00% | 16.66 0.18 | STRONG | MODERATE | | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe | Arthroscopy | 77.80% 70.40% | 2.63 0.32 | WEAK | WEAK | | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe | Arthroscopy | 85.70% 93.20% | 12.6 0.15 | STRONG | MODERATE | | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe | Arthroscopy | 90.00% 76.70% | 3.86 0.13 | WEAK | MODERATE | | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe | Arthroscopy | 86.70% 91.40% | 10.08 0.15 | STRONG | MODERATE | | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe | Arthroscopy | 81.30% 87.00% | 6.25 0.21 | MODERATE | WEAK | | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe (Female
patients) | Arthroscopy | 85.70% 82.90% | 5.01 0.17 | MODERATE | MODERATE | | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe (Lateral
Meniscus in female patients) | Arthroscopy | 75.00% 94.70% | 14.15 0.26 | STRONG | WEAK | | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe (Lateral
Meniscus in male patients) | Arthroscopy | 62.50% 95.20% | 13.02 0.39 | STRONG | WEAK | | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe (Lateral
Meniscus) | Arthroscopy | 66.70% 95.60% | 15.16 0.35 | STRONG | WEAK | | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |--------------------|---------------------|--|--|-----------------------|---------------|------------|-----------------|------------------| | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe (Male patients) | Arthroscopy | 85.20% 89.80% | 8.35 0.16 | MODERATE | MODERATE | | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe (Medial
Meniscus in female patients) | Arthroscopy | 90.00% 68.80% | 2.88 0.15 | WEAK | MODERATE | | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe (Medial
Meniscus in male patients) | Arthroscopy | 94.70% 78.90% | 4.49 0.07 | WEAK | STRONG | | Wareluk,
2012 | High Quality | Mean Age: 36.2 yrs; Age
Range: (16-70 Yrs); Female
52.9% | Ultrasound; Voluson 730 Expert, 6-12
MHz frequency probe (Medial
Meniscus) | Arthroscopy | 93.10% 72.50% | 3.39 0.1 | WEAK | STRONG | | Elshimy, 2021 | Moderate
Quality | Mean Age: 32.9 yrs; (Age
Range: 18-60 Yrs); Female
25% | Ultrasound (POCUS); high-resolution
linear multi-frequency transducer 9-
15 MHz (ideally 12 MHz) superficial
probe | Arthroscopy | 92.90% 88.90% | 8.37 0.08 | MODERATE | STRONG | | Elshimy, 2021 | Moderate
Quality | Mean Age: 32.9 yrs; (Age
Range: 18-60 yrs); Female
25% | Ultrasound (POCUS); high-resolution
linear multi-frequency transducer 9-
15 MHz (ideally 12 MHz) superficial
probe (Lateral Meniscus) | Arthroscopy | 90.00% 98.00% | 45 0.1 | STRONG | MODERATE | | Elshimy, 2021 | Moderate
Quality | Mean Age: 32.9 yrs; (Age
Range: 18-60 yrs); Female
25% | Ultrasound (POCUS); high-resolution
linear multi-frequency transducer 9-
15 MHz (ideally 12 MHz) superficial
probe (Medial Meniscus) | Arthroscopy | 93.75% 96.43% | 26.25 0.06 | STRONG | STRONG | Table 10. Arthrography | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |---------------------|---------------------|--|---------------------------------|-----------------------|---------------------|---------------------|---------------------|------------------| | van Heuzen,
1988 | Moderate
Quality | Median Age: 28 yrs; (Age
Range: 14 to 58 yrs);
Female: 16% | Arthrography (Double Contrast) | Arthroscopy | Unable to calculate | Unable to calculate | FP: 1 | FN: 3 | | Abdon, 1989 | Moderate
Quality | Mean Age: 32 yrs; Female: 21.74% | Arthrography (Lateral Meniscus) | Arthroscopy | 100.0% 100.0% | . 0 | Unable to calculate | STRONG | | Abdon, 1989 | Moderate
Quality | Mean Age: 32 yrs; Female:
21.74% | Arthrography (Medial Meniscus) | Arthroscopy | 97.22% 63.64% | 2.67 0.04 | WEAK | STRONG | | Dhillon, 1985 | Moderate
Quality | Age Range: (19-39 yrs) | Arthrography (Lateral Meniscus) | Arthrotomy | 75.00% | 1.47 0.53 | POOR | POOR | | Dhillon, 1985 | Moderate
Quality | Age Range: (19-39 yrs) | Arthrography (Medial Meniscus) | Arthrotomy | 56.67% 50.00% | 1.13 0.87 | POOR | POOR | Table 11. Surgery/Arthroscopy | Reference
Title | Quality | Patient Char. | Index Test | Reference
Standard | Sens Spec | LR+ LR- | Rule In
Test | Rule Out
Test | |--------------------|---------------------|--|-----------------------------------|-----------------------|-----------|---------------------|-----------------|------------------| | Roper, 1986 | Moderate
Quality | Mean Age: 45 yrs; (Age
Range: 35-77 yrs); Female:
28.57% | Surgery (Anterior horn tear) | Arthrogram | 75.00% . | Unable to calculate | | | | Roper, 1986 | Moderate
Quality | Mean Age: 45 yrs; (Age
Range: 35-77 yrs); Female:
28.57% | Surgery (Bucket handle tear) | Arthrogram | 75.00% . | Unable to calculate | | | | Roper, 1986 | Moderate
Quality | Mean Age: 45 yrs; (Age
Range: 35-77 yrs); Female:
28.57% | Surgery (Lateral Meniscus) | Arthrogram | 61.54% . | Unable to calculate | | | | Roper, 1986 | Moderate
Quality | Mean Age: 45 yrs; (Age
Range: 35-77 yrs); Female:
28.57% | Surgery (Medial Meniscus) | Arthrogram | 81.08% . | Unable to calculate | | | | Roper, 1986 | Moderate
Quality | Mean Age: 45 yrs; (Age
Range: 35-77 yrs); Female:
28.57% | Surgery (No definition of tear) | Arthrogram | 100.0% . | Unable to calculate | | | | Roper, 1986 | Moderate
Quality | Mean Age: 45 yrs; (Age
Range: 35-77 yrs); Female:
28.57% | Surgery (No pathology at surgery) | Arthrogram | 100.0% . | Unable to calculate | | | | Roper, 1986 | Moderate
Quality | Mean Age: 45 yrs; (Age
Range: 35-77 yrs); Female:
28.57% | Surgery (Parrot beak tear) | Arthrogram | 50.00% . | Unable to calculate | | | | Roper, 1986 | Moderate
Quality | Mean Age: 45 yrs; (Age
Range: 35-77 yrs);
Female:
28.57% | Surgery (Peripheral detachment) | Arthrogram | 100.0% . | Unable to calculate | | | | Roper, 1986 | Moderate
Quality | Mean Age: 45 yrs; (Age
Range: 35-77 yrs); Female:
28.57% | Surgery (Posterior horn tear) | Arthrogram | 80.00% . | Unable to calculate | | | | Roper, 1986 | Moderate
Quality | Mean Age: 45 yrs; (Age
Range: 35-77 yrs); Female:
28.57% | Surgery (Vertical split tear) | Arthrogram | 60.00% . | Unable to calculate | | | | Dhillon, 1985 | Moderate
Quality | Age Range: (19-39 yrs) | Arthroscopy (Lateral Meniscus) | Arthrotomy | 87.50% . | 1.71 0.29 | POOR | WEAK | | Dhillon, 1985 | Moderate
Quality | Age Range: (19-39 yrs) | Arthroscopy (Medial Meniscus) | Arthrotomy | 92.11% . | 1.82 0.18 | POOR | MODERATE | | |---------------|---------------------|------------------------|-------------------------------|------------|----------|-------------|------|----------|--| |---------------|---------------------|------------------------|-------------------------------|------------|----------|-------------|------|----------|--| # PICO 3: Advanced Imaging Utility No included evidence #### PICO 4: Tx Indications Figure 1: Operative Tx vs. Non-Operative Tx - Summary of Findings Table 12: Additional Article Details | Author | Quality | Pt | Additional | Age) | Activity Level | Timing of | Symptoms | Pain | Location of | Location of | Time from | Mechanism of | Operative Tx | Tear Type) | |--------|---------|-----------------|------------|---------|------------------------|------------|-------------------|----------|-------------|-------------|------------|--------------|--------------|-------------| | | | Characteristics | Notes | | | Symptoms | | | Pain | Injury | Injury | Injury | Туре | | | Marder | Low | Mean Age: | | Age | Type of activity was | Operative | Principal | All | 55 had | Operative | Operative | NA | 34 patients | Operative | | , 1994 | | 27/40 yrs; | | Range: | arbitrarily classified | Group: | complaint was | patients | join line | Group: 25 | Group: | | had | Group: 22 | | | | Female: | | (22- | as type I (low | 4.5 mos | pain, and the | had pain | tendernes | medial, 9 | 4.5 mos | | arthroscopic | Vertical, 8 | | | | 36.11%/36.3 | | 68/16- | demand), type II | (range: 0- | most frequent | | s; 36 had | lateral, 2 | (range: 0- | | partial | Horizontal | | | | 6%; Mean | | 43 yrs) | (moderate demand), | 12)/Non- | finding was | | pain w/ | both; | 12)/Non- | | meniscecto | , 7 | | | | BMI: NA | | | and type III (high | Operative | joint-line | | forced | Non- | Operative | | my; 2 | Complex; | | | | | | | demand) which | Group: 6 | tenderness. | | flexion; 27 | Operative | Group: 6 | | patients had | Non- | | | | | | | required knee | mos | Symptoms: Pain | | had pain | Group: 16 | mos | | meniscal | Operative | | | | | | | pivoting. Operative | (Range: 0- | (n=58), Giving | | w/ forced | medial, 5 | (Range: 0- | | repair | Group: 13 | | | | | | | Group: Type I (n=2), | 15) | way (n = 34), | | extension; | lateral, 1 | 15) | | | Vertical, 5 | | | | | | | Type II (n=10), type | | Swelling (n = | | 2 had pain | both | | | | Horizontal | | | | | | | III (n=24); Non- | | 31), Stiffness (n | | with | | | | | , 6 | | | | | | | Operative Group: | | = 7), Popping (n | | patellofe | | | | | Complex | | | | | | | Type 1 (n=12), Type II | | = 27), Catching | | moral | | | | | | | | | | | | (n=7), Type III (m=3) | | (n = 22), | | compressi | | | | | | | | | | | | | | Grinding (n = 4) | | on | | | | | | Table 13: Operative Tx vs. Non-operative Tx - Pain | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--------------------|----------|---|---------------------------------------|-------------------|-----------------------|----------------------| | Marder, 1994 | Low | Pain at Follow Up | 3 mos | 34 patients had arthroscopic partial meniscectomy, 2 patients had meniscal repair | Patients chose not to undergo surgery | RR | 0.71(0.29,1.73) | NS | Table 14: Operative Tx vs. Non-operative Tx - Return to Activity | Reference
Title | Quality | Outcome
Details | | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--|-------|---|--|-------------------|-----------------------|----------------------| | Marder,
1994 | Low | Preinjury Activity Level (Number of patients who returned to preinjury activity level) | 3 mos | 34 patients had arthroscopic partial meniscectomy, 2 patients had meniscal repair | Patients chose not to
undergo surgery | RR | 1.23(0.89,1.70) | NS | ## PICO 5: Injections No included evidence # PICO 6: Physical Therapy Figure 2: PT Modalities vs. PT Modalities – Summary of Findings | | Moderate | |--|------------------------| | ↑ Better Outcomes ↓ Worse Outcomes • Not Significant | Kasturi, 2020 Moderate | | Function | | | ROM (degrees) | 1 | | Patient Specific Functional | | | Score | 1 | | Pain | | | VAS Pain at Rest | 1 | Table 15: PT Modalities vs. PT Modalities - Function | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|-----------------------------------|----------|---|-----------------------------|---|-----------------------|---| | Kasturi,
2020 | Moderate | ROM (degrees) | 1 mos | Conventional Therapy with MC "Squeeze" Conventional Technique Conventional Therapy Author Reported - independent t-test | | | 6.00(.,.) | Conventional Therapy with MC "Squeeze"
Technique | | Kasturi,
2020 | Moderate | ROM (degrees) | 1.5 mos | Conventional Therapy with MC "Squeeze"
Technique | Conventional
Therapy | Author Reported - independent
t-test | 7.50(.,.) | Conventional Therapy with MC "Squeeze"
Technique | | Kasturi,
2020 | Moderate | Patient Specific Functional Score | 1 mos | Conventional Therapy with MC "Squeeze"
Technique | Conventional
Therapy | Mean Difference | 1.3 (0.77, 1.83) | Conventional Therapy with MC "Squeeze" technique | | Kasturi,
2020 | Moderate | Patient Specific Functional Score | 1.5 mos | Conventional Therapy with MC "Squeeze"
Technique | Conventional
Therapy | Mean Difference | 1.375 (0.92,
1.83) | Conventional Therapy with MC "Squeeze" technique | Table 16: PT Modalities vs. PT Modalities - Pain | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|--------------------|----------|--|-----------------------------|-------------------|-----------------------|--| | Kasturi, 2020 | Moderate | VAS Pain at Rest | 1 mos | Conventional Therapy with MC "Squeeze" Technique | Conventional Therapy | Mean Difference | -1.65 (-2.37, -0.93) | Conventional Therapy with MC "Squeeze" technique | | Kasturi, 2020 | Moderate | VAS Pain at Rest | 1.5 mos | Conventional Therapy with MC "Squeeze" Technique | Conventional Therapy | Mean Difference | -1.95 (-2.59, -1.31) | Conventional Therapy with MC "Squeeze" technique | #### PICO 7: Oral Medication Figure 3: Oral Medication vs. No Oral Medication – Summary of Findings Table 17: Oral Medication vs. No Oral Medication - Function | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|---|----------|--|---------------------------------------|--------------------|-----------------------|--| | Taskin,
2022 | Low | Y-Balance Test (Balance -
Anterior Right Leg) | 3 mos | Hydrolyzed Type-II Collagen Treatment orally on an empty stomach:
10g/day in the morning orally on an empty stomach for three
months | No additional nutritional supplements | Mean
Difference | 7.42 (5.38,
9.46) | Hydrolyzed Type-II Collagen
Treatment orally on an empty
stomach | | Taskin,
2022 | Low | Y-Balance Test (Balance -
Anterior Left Leg) | 3 mos | Hydrolyzed Type-II Collagen Treatment orally on an empty stomach: 10g/day in the morning orally on an empty stomach for three months | No additional nutritional supplements | Mean
Difference | 6.62 (4.26,
8.98) | Hydrolyzed Type-II Collagen
Treatment orally on an empty
stomach | | Taskin,
2022 | Low | Y-Balance Test (Balance -
Anterior Average (cm)) | 3 mos | Hydrolyzed Type-II Collagen Treatment orally on an empty stomach: 10g/day in the morning orally on an empty stomach for three months | No additional nutritional supplements | Mean
Difference | 7.02 (4.48,
9.56) | Hydrolyzed Type-II Collagen
Treatment orally on an empty
stomach | | Taskin,
2022 | Low | Y-Balance Test (Balance -
Posteromedial Right Leg) | 3 mos |
Hydrolyzed Type-II Collagen Treatment orally on an empty stomach: 10g/day in the morning orally on an empty stomach for three months | No additional nutritional supplements | Mean
Difference | 5.9 (3.10,
8.70) | Hydrolyzed Type-II Collagen
Treatment orally on an empty
stomach | | Taskin,
2022 | Low | Y-Balance Test (Balance -
Posteromedial Left Leg) | 3 mos | Hydrolyzed Type-II Collagen Treatment orally on an empty stomach: 10g/day in the morning orally on an empty stomach for three months | No additional nutritional supplements | Mean
Difference | 6.74 (4.16,
9.32) | Hydrolyzed Type-II Collagen
Treatment orally on an empty
stomach | | Taskin,
2022 | Low | Y-Balance Test (Balance -
Posteromedial Average (cm)) | 3 mos | Hydrolyzed Type-II Collagen Treatment orally on an empty stomach: 10g/day in the morning orally on an empty stomach for three months | No additional nutritional supplements | Mean
Difference | 6.32 (4.30,
8.34) | Hydrolyzed Type-II Collagen
Treatment orally on an empty
stomach | | Taskin,
2022 | Low | Y-Balance Test (Balance -
Posterolateral Right Leg) | 3 mos | Hydrolyzed Type-II Collagen Treatment orally on an empty stomach:
10g/day in the morning orally on an empty stomach for three
months | No additional nutritional supplements | Mean
Difference | 5.5 (2.82,
8.18) | Hydrolyzed Type-II Collagen
Treatment orally on an empty
stomach | | Taskin,
2022 | Low | Y-Balance Test (Balance -
Posterolateral Left Leg) | 3 mos | Hydrolyzed Type-II Collagen Treatment orally on an empty stomach:
10g/day in the morning orally on an empty stomach for three
months | No additional nutritional supplements | Mean
Difference | 6.4 (4.03,
8.77) | Hydrolyzed Type-II Collagen
Treatment orally on an empty
stomach | | Taskin,
2022 | Low | Y-Balance Test (Balance -
Posterolateral Average (cm)) | 3 mos | Hydrolyzed Type-II Collagen Treatment orally on an empty stomach:
10g/day in the morning orally on an empty stomach for three
months | No additional nutritional supplements | Mean
Difference | 5.95 (3.38,
8.52) | Hydrolyzed Type-II Collagen
Treatment orally on an empty
stomach | | Taskin,
2022 | Low | Y-Balance Test (Total Average Y
Balance Test) | 3 mos | Hydrolyzed Type-II Collagen Treatment orally on an empty stomach: 10g/day in the morning orally on an empty stomach for three months | No additional nutritional supplements | Mean
Difference | 6.43 (4.17,
8.69) | Hydrolyzed Type-II Collagen
Treatment orally on an empty
stomach | ## PICO 8: Adjunctive Non-Operative Tx Figure 4: Nerve Stimulation vs. No Treatment/Control – Summary of Findings | | Moderate | |--|---------------------| | ↑ Better Outcomes↓ Worse Outcomes• Not Significant | Malliaropoulos,2013 | | Composite | | | Lysholm Knee Score | 1 | | Pain | | | VAS Pain | 1 | Table 18: Nerve Stimulation vs. No Treatment/Control - Composite | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |-------------------------|----------|-----------------------|----------|---|---|--------------------|--------------------------|----------------------------| | Malliaropoulos,
2013 | Moderate | Lysholm
Knee Score | 1 mos | Low-Level Laser Therapy: Twice per week for the first 3 weeks and once per week for the next 3 weeks (a total of 9 sessions). Each patient was treated for 420 s per knee and per session (210 s using 2,400 Hz and 210 s using 700 Hz, 10.5 s per point). The dose of active treatment was 2.52 J per point, 100.8 J per knee. | Identical Placebo Therapy: Twice per
week for the first 3 weeks and once per
week for the next 3 weeks (a total of 9
sessions) | Mean
Difference | 3.43
(1.71,
5.15) | Low-Level
Laser Therapy | | Malliaropoulos,
2013 | Moderate | Lysholm
Knee Score | 6 mos | Low-Level Laser Therapy: Twice per week for the first 3 weeks and once per week for the next 3 weeks (a total of 9 sessions). Each patient was treated for 420 s per knee and per session (210 s using 2,400 Hz and 210 s using 700 Hz, 10.5 s per point). The dose of active treatment was 2.52 J per point, 100.8 J per knee. | Identical Placebo Therapy: Twice per
week for the first 3 weeks and once per
week for the next 3 weeks (a total of 9
sessions) | Mean
Difference | 9.87
(7.62,
12.12) | Low-Level
Laser Therapy | | Malliaropoulos,
2013 | Moderate | Lysholm
Knee Score | 1 yrs | Low-Level Laser Therapy: Twice per week for the first 3 weeks and once per week for the next 3 weeks (a total of 9 sessions). Each patient was treated for 420 s per knee and per session (210 s using 2,400 Hz and 210 s using 700 Hz, 10.5 s per point). The dose of active treatment was 2.52 J per point, 100.8 J per knee. | Identical Placebo Therapy: Twice per
week for the first 3 weeks and once per
week for the next 3 weeks (a total of 9
sessions) | Mean
Difference | 6.56
(4.08,
9.04) | Low-Level
Laser Therapy | Table 19: Nerve Stimulation vs. No Treatment/Control - Pain | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |-------------------------|----------|--------------------|----------|---|---|--------------------|---------------------------------|----------------------------| | Malliaropoulos,
2013 | Moderate | VAS Pain | 1 mos | Low-Level Laser Therapy: Twice per week for the first 3 weeks and once per week for the next 3 weeks (a total of 9 sessions). Each patient was treated for 420 s per knee and per session (210 s using 2,400 Hz and 210 s using 700 Hz, 10.5 s per point). The dose of active treatment was 2.52 J per point, 100.8 J per knee. | Identical Placebo Therapy: Twice per
week for the first 3 weeks and once per
week for the next 3 weeks (a total of 9
sessions) | Mean
Difference | -31.81 (-
36.75, -
26.87) | Low-Level
Laser Therapy | | Malliaropoulos,
2013 | Moderate | VAS Pain | 6 mos | Low-Level Laser Therapy: Twice per week for the first 3 weeks and once per week for the next 3 weeks (a total of 9 sessions). Each patient was treated for 420 s per knee and per session (210 s using 2,400 Hz and 210 s using 700 Hz, 10.5 s per point). The dose of active treatment was 2.52 J per point, 100.8 J per knee. | Identical Placebo Therapy: Twice per
week for the first 3 weeks and once per
week for the next 3 weeks (a total of 9
sessions) | Mean
Difference | -49.5 (-
52.69, -
46.31) | Low-Level
Laser Therapy | | Malliaropoulos,
2013 | Moderate | VAS Pain | 1 yrs | Low-Level Laser Therapy: Twice per week for the first 3 weeks and once per week for the next 3 weeks (a total of 9 sessions). Each patient was treated for 420 s per knee and per session (210 s using 2,400 Hz and 210 s using 700 Hz, 10.5 s per point). The dose of active treatment was 2.52 J per point, 100.8 J per knee. | Identical Placebo Therapy: Twice per
week for the first 3 weeks and once per
week for the next 3 weeks (a total of 9
sessions) | Mean
Difference | -49.2 (-
51.83, -
46.57) | Low-Level
Laser Therapy | ## PICO 9: Time to Operative Tx Figure 5: Time to Operative Tx/Length of Non-Op Tx vs. Time to Op Tx – Summary of Findings | ↑ Better Outcomes ↓ Worse Outcomes • Not Significant | Stone, 1988 Low | Marder, 1994 | |--|-----------------|--------------| | Adverse | | | | events | | | | Increase in Condylar | | | | Chondromalacia | P | | | Chondral Damage | | | | Return to | | | | activity | | | | Satisfactory Results | 1 | | Table 20: Time to Operative Tx/Length of Non-Op Tx vs. Time to Op Tx - Adverse Events | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--|----------|---|---|-------------------|-----------------------|---| | Stone,
1988 | Low | Increase in Condylar Chondromalacia (Significant chondromalacia was considered any change of grade 2 or worse) | 2 yrs | < 6 mos between onset of symptoms
and arthroscopic partial
meniscectomy | > 6 mos between onset of symptoms
and arthroscopic partial
meniscectomy | RR | 0.42(0.28,0.62) | < 6 mos between onset of symptoms
and arthroscopic partial
meniscectomy | |
Marder,
1994 | Low | Chondral Damage | 3 mos | < 6 mos: < 2 months and between 2
and 6 months were grouped
together | > 6 mos | RR | 0.77(0.24,2.50) | NS | Table 21: Time to Operative Tx/Length of Non-Op Tx vs. Time to Op Tx - Return to Activity | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--|----------|--|--|-------------------|-----------------------|--| | Stone,
1988 | Low | Satisfactory Results (Patients assigned to 4 groups according to their results: excellent, good, fair, and poor. Patients with excellent results relayed no problems and returned to presymptom level of activity. Patients with good had minimal or occasional symptoms and full activity. Fair results had frequent symptoms or decrease in activity. Poor results showed deterioration from preoperative state or required additional surgery. "Satisfactory" were those with excellent or good results. "Unsatisfactory" were fair/poor results.) | 2 yrs | < 6 mos between onset
of symptoms and
arthroscopic partial
meniscectomy | > 6 mos between onset
of symptoms and
arthroscopic partial
meniscectomy | RR | 1.54(1.08,2.19) | < 6 mos between onset
of symptoms and
arthroscopic partial
meniscectomy | ## PICO 10: Meniscal Repair Figure 6: Meniscus Repair vs. Meniscectomy – Summary of Findings | | Lo | w | | | | |--|-----------|----------|----------------|-----------|-------------| | ↑ Better Outcomes ↓ Worse Outcomes • Not Significant | Mao, 2022 | Lu, 2020 | Sochacki, 2020 | Gan, 2020 | Stein, 2010 | | Composite | | | | | | | IKDC | | | | | | | Lysholm Knee Score | 1 | | | | | | Ikeuchi Score | | | | | | | Function | | | | | | | Tegner Score | | | | ₩ | | | ROM (degrees) | | | | | | | Pain | | | | | | | Pain During Activity | | | | | | | Surgery | | | | | | | Partial Meniscectomy | | | | | | | Adverse | | | | | | | events | | | | | | | Reoperation (Overall) | | | 1 | | | | Complications (Any) | | | • | | | Table 22: Meniscus Repair vs. Meniscectomy - Composite | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|---|----------|---|--|--------------------|---------------------------|--------------------------------| | Mao,
2022 | Low | Lysholm Knee Score (Used "to evaluate clinical
efficacy") | 3 mos | Meniscus Repair: Partial Meniscus Excision + Plasty | Total Meniscus Resection: For the severe degree of meniscus tear, involving the peripheral tissues of the meniscus, at the same time as the torn meniscus is removed, part of the peripheral tissue of the meniscus is removed, and all meniscus fragments are removed; | Mean
Difference | -8.43 (-13.21, -
3.65) | Total
Meniscus
Resection | | Mao,
2022 | Low | Lysholm Knee Score (Used "to evaluate clinical efficacy") | 6 mos | Meniscus Repair: Partial Meniscus Excision + Plasty | Total Meniscus Resection: For the severe degree of meniscus tear, involving the peripheral tissues of the meniscus, at the same time as the torn meniscus is removed, part of the peripheral tissue of the meniscus is removed; and all meniscus fragments are removed; a total meniscus | Mean
Difference | -1.05 (-4.05,
1.95) | NS | | Mao,
2022 | Low | Lysholm Knee Score (Used "to evaluate clinical
efficacy") | 1 yrs | Meniscus Repair: Partial Meniscus Excision + Plasty | Total Meniscus Resection: For the severe degree of meniscus tear, involving the peripheral tissues of the meniscus, at the same time as the torn meniscus is removed, part of the peripheral tissue of the meniscus is removed; and all meniscus fragments are removed; a total meniscus | Mean
Difference | -0.58 (-3.12,
1.96) | NS | | Mao,
2022 | Low | Ikeuchi Score (Reported as Excellent, Good and Poor - dichotomized to an "Excellent and Good' Score; "Excellent": normal range of motion, no mechanical symptoms (snap, lock), no pain; "good": normal range of motion, no mechanical symptoms (snap, lock), and occasional mild pain during or after exercise; possible: normal range of motion, mechanical symptoms (snap, lock), mild pain during or after exercise; poor: limited range of motion, mechanical symptoms (snap, lock), pain during rest and exercise) | Postop. | Meniscus Repair: Partial Meniscus Excision + Plasty | Total Meniscus Resection: For the severe degree of meniscus tear, involving the peripheral tissues of the meniscus, at the same time as the torn meniscus is removed, part of the peripheral tissue of the meniscus is removed, and all meniscus fragments are removed; a total meniscus | RR | 1.08(0.88,1.32) | NS | | Stein,
2010 | Low | Lysholm Knee Score | 9 yrs | Meniscus Repair: Performed in full-thickness and vertical longitudinal tears greater than 1 cm in length or bucket-handle tears in the red-red to the redwhite zone | Partial Meniscectomy: Performed in ruptures in the white-white zone | Mean
Difference | 3.19 (-1.73,
8.11) | NS | | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|---|----------|--|--|--------------------|-----------------------|----------------------| | Stein,
2010 | Low | Lysholm Knee Score | 3 yrs | Meniscus Repair: Performed in full-thickness and vertical longitudinal tears greater than 1 cm in length or bucket-handle tears in the red-red to the redwhite zone | Partial Meniscectomy: Performed in ruptures in the white-white zone | Mean
Difference | 1.28 (-3.32,
5.88) | NS | | Lu, 2020 | Low | Lysholm Knee Score (Comparison of clinical efficacy - "Excellent and Good" indicated painless group with excellent > = 90 and good 80-90) | Postop. | Meniscoplasty: After inserting the arthroscope, the anterior medial approach was chosen to insert the planing knife to clean the hyperplastic synovium. The anterolateral approach was then chosen to insert the blue forceps to remove the thickened tissue, and to trim the incision to keep the structure of the meniscus in a "C" shape. For patients w/ a lamellar tear, the next layer was excised, while for patients with a barrel-shaped tear, the operation was completed along the tear edge. | Subtotal Meniscectomy: After inserting the arthroscope, the cold light source was turned on and the hyperplastic synovium was trimmed. The blue forceps were inserted from the anterior side to remove the severely damaged meniscus. For those who were severely torn, with the surrounding tissue affected, the soft tissue of the corresponding tissue was removed. | RR | 1.00(0.82,1.23) | NS | | Lu, 2020 | Low | Lysholm Knee Score ("Excellent" >=90 points) | Postop. | Meniscoplasty: After inserting the arthroscope, the anterior medial approach was chosen to insert the planing knife to clean the hyperplastic synovium. The anterolateral approach was then chosen to insert the blue forceps to remove the thickened tissue, and to trim the
incision to keep the structure of the meniscus in a "C" shape. For patients w/ a lamellar tear, the next layer was excised, while for patients with a barrel-shaped tear, the operation was completed along the tear edge. | Subtotal Meniscectomy: After inserting the arthroscope, the cold light source was turned on and the hyperplastic synovium was trimmed. The blue forceps were inserted from the anterior side to remove the severely damaged meniscus. For those who were severely torn, with the surrounding tissue affected, the soft tissue of the corresponding tissue was removed. | RR | 1.04(0.64,1.70) | NS | | Lu, 2020 | Low | Lysholm Knee Score ("Good" 80-90 points) | Postop. | Meniscoplasty: After inserting the arthroscope, the anterior medial approach was chosen to insert the planing knife to clean the hyperplastic synovium. The anterolateral approach was then chosen to insert the blue forceps to remove the thickened tissue, and to trim the incision to keep the structure of the meniscus in a "C" shape. For patients w/ a lamellar tear, the next layer was excised, while for patients with a barrel-shaped tear, the operation was completed along the tear edge. | Subtotal Meniscectomy: After inserting the arthroscope, the cold light source was turned on and the hyperplastic synovium was trimmed. The blue forceps were inserted from the anterior side to remove the severely damaged meniscus. For those who were severely torn, with the surrounding tissue affected, the soft tissue of the corresponding tissue was removed. | RR | 0.96(0.52,1.77) | NS | | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--|----------|--|--|--------------------|-------------------------|----------------------| | Lu, 2020 | Low | Lysholm Knee Score ("Average" 60 - 80 points) | Postop. | Meniscoplasty: After inserting the arthroscope, the anterior medial approach was chosen to insert the planing knife to clean the hyperplastic synovium. The anterolateral approach was then chosen to insert the blue forceps to remove the thickened tissue, and to trim the incision to keep the structure of the meniscus in a "C" shape. For patients w/ a lamellar tear, the next layer was excised, while for patients with a barrel-shaped tear, the operation was completed along the tear edge. | Subtotal Meniscectomy: After inserting the arthroscope, the cold light source was turned on and the hyperplastic synovium was trimmed. The blue forceps were inserted from the anterior side to remove the severely damaged meniscus. For those who were severely torn, with the surrounding tissue affected, the soft tissue of the corresponding tissue was removed. | RR | 0.82(0.22,3.02) | NS | | Lu, 2020 | Low | Lysholm Knee Score ("Poor" <60 points) | Postop. | Meniscoplasty: After inserting the arthroscope, the anterior medial approach was chosen to insert the planing knife to clean the hyperplastic synovium. The anterolateral approach was then chosen to insert the blue forceps to remove the thickened tissue, and to trim the incision to keep the structure of the meniscus in a "C" shape. For patients w/ a lamellar tear, the next layer was excised, while for patients with a barrel-shaped tear, the operation was completed along the tear edge. | Subtotal Meniscectomy: After inserting the arthroscope, the cold light source was turned on and the hyperplastic synovium was trimmed. The blue forceps were inserted from the anterior side to remove the severely damaged meniscus. For those who were severely torn, with the surrounding tissue affected, the soft tissue of the corresponding tissue was removed. | RR | 1.64(0.16,17.29) | NS | | Gan, 2020 | Low | IKDC (Longitudinal tears (Including Bucket-Handle) only) | 2 yrs | Meniscus Repair | Partial Meniscectomy | Mean
Difference | -10.6 (-24.85,
3.65) | NS | | Gan, 2020 | Low | IKDC (Radial tears only) | 2 yrs | Meniscus Repair | Partial Meniscectomy | Mean
Difference | 0.9 (-13.52,
15.32) | NS | Table 23: Meniscus Repair vs. Meniscectomy - Function | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|---|----------|--|--|--------------------|----------------------------|----------------------| | Mao,
2022 | Low | Tegner Score (Used "to evaluate the functional recovery of the knee joint after surgery") | Postop. | Meniscus Repair: Partial Meniscus Excision + Plasty | Total Meniscus Resection: For the severe degree of meniscus tear, involving the peripheral tissues of the meniscus, at the same time as the torn meniscus is removed, part of the peripheral tissue of the meniscus is removed, and all meniscus fragments are removed; a total meniscus | Mean
Difference | -0.15 (-
1.01,
0.71) | NS | | Stein,
2010 | Low | Tegner Score | 9 yrs | Meniscus Repair: Performed in full-thickness and vertical longitudinal tears greater than 1 cm in length or bucket-handle tears in the red-red to the red-white zone | Partial Meniscectomy: Performed in ruptures in the white-white zone | Mean
Difference | 0.16 (-
0.78,
1.10) | NS | | Stein,
2010 | Low | Tegner Score (Tegner
Sports Activity Level
Loss) | 3 yrs | Meniscus Repair: Performed in full-thickness and vertical longitudinal tears greater than 1 cm in length or bucket-handle tears in the red-red to the red-white zone | Partial Meniscectomy: Performed in ruptures in the white-white zone | Mean
Difference | 0.08 (-
0.18,
0.34) | NS | | Lu, 2020 | Low | ROM (degrees)
(Maximum degree of
knee flexion of the
affected limb) | 2 wks | Meniscoplasty: After inserting the arthroscope, the anterior medial approach was chosen to insert the planing knife to clean the hyperplastic synovium. The anterolateral approach was then chosen to insert the blue forceps to remove the thickened tissue, and to trim the incision to keep the structure of the meniscus in a "C" shape. For patients w/ a lamellar tear, the next layer was excised, while for patients with a barrel-shaped tear, the operation was completed along the tear edge. | Subtotal Meniscectomy: After inserting the arthroscope, the cold light source was turned on and the hyperplastic synovium was trimmed. The blue forceps were inserted from the anterior side to remove the severely damaged meniscus. For those who were severely torn, with the surrounding tissue affected, the soft tissue of the corresponding tissue was removed. | Mean
Difference | -0.35 (-
4.19,
3.49) | NS | | Lu, 2020 | Low | ROM (degrees)
(Maximum degree of
knee flexion of the
affected limb) | 1.5 mos | Meniscoplasty: After inserting the arthroscope, the anterior medial approach was chosen to insert the planing knife to clean the hyperplastic synovium. The anterolateral approach was then chosen to insert the blue forceps to remove the thickened tissue, and to trim the incision to keep the structure of the meniscus in a "C" shape. For patients w/ a lamellar tear, the next layer was excised, while for patients with a barrel-shaped tear, the operation was completed along the tear edge. | Subtotal Meniscectomy: After inserting the arthroscope, the cold light source was turned on and the hyperplastic synovium was trimmed. The blue forceps were inserted from the anterior side to remove the severely damaged meniscus. For those who were severely torn, with the surrounding tissue affected, the soft tissue of the corresponding tissue was removed. | Mean
Difference | -1.08 (-
5.59,
3.43) | NS | | Lu, 2020 | Low | ROM (degrees)
(Maximum degree of
knee flexion of the
affected limb) | 3 mos | Meniscoplasty: After inserting the arthroscope, the anterior medial approach was chosen to insert the planing knife to clean the hyperplastic synovium. The anterolateral approach was then chosen to insert the blue forceps to remove the thickened tissue, and to trim the incision to keep the structure of the
meniscus in a "C" shape. For patients w/ a lamellar tear, the next layer was excised, while for patients with a barrel-shaped tear, the operation was completed along the tear edge. | Subtotal Meniscectomy: After inserting the arthroscope, the cold light source was turned on and the hyperplastic synovium was trimmed. The blue forceps were inserted from the anterior side to remove the severely damaged meniscus. For those who were severely torn, with the surrounding tissue affected, the soft tissue of the corresponding tissue was removed. | Mean
Difference | -0.31 (-
3.34,
2.72) | NS | | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--|----------|-----------------------------|-----------------------------|--------------------|-----------------------------|-------------------------| | Gan, 2020 | Low | Tegner Score
(Longitudinal tears
(Including Bucket-
Handle) only) | 2 yrs | Meniscus Repair | Partial Meniscectomy | Mean
Difference | -1.3 (-
2.28, -
0.32) | Partial
Meniscectomy | | Gan, 2020 | Low | Tegner Score (Radial tears only) | 2 yrs | Meniscus Repair | Partial Meniscectomy | Mean
Difference | -0.4 (-
1.41,
0.61) | NS | Table 24: Meniscus Repair vs. Meniscectomy - Adverse Events | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--|----------|-----------------------------|-----------------------------|-------------------|-----------------------|----------------------| | Sochacki, 2020 | Low | Reoperation (Overall reoperation rates) | 4 yrs | Meniscus Repair | Meniscectomy | RR | 0.39(0.33,0.48 | Meniscus Repair | | Sochacki, 2020 | Low | Reoperation ("Meniscal Surgery" - Meniscectomy or Meniscal Repair) | 4 yrs | Meniscus Repair | Meniscectomy | RR | 0.58(0.48,0.70 | Meniscus Repair | | Sochacki, 2020 | Low | Reoperation (Meniscal Transplantation) | 4 yrs | Meniscus Repair | Meniscectomy | RR | 0.10(0.01,0.73 | Meniscus Repair | | Sochacki, 2020 | Low | Reoperation (Synovectomy) | 4 yrs | Meniscus Repair | Meniscectomy | RR | 0.92(0.72,1.19 | NS | | Sochacki, 2020 | Low | Reoperation (Chondroplasty) | 4 yrs | Meniscus Repair | Meniscectomy | RR | 1.06(0.69,1.62 | NS | | Sochacki, 2020 | Low | Reoperation (Manipulation under Anesthesia) | 4 yrs | Meniscus Repair | Meniscectomy | RR | 1.04(0.45,2.38 | NS | | Sochacki, 2020 | Low | Reoperation (Lysis of Adhesions) | 4 yrs | Meniscus Repair | Meniscectomy | RR | 2.48(1.24,4.94 | Meniscectomy | | Sochacki, 2020 | Low | Reoperation (Loose Body Removal) | 4 yrs | Meniscus Repair | Meniscectomy | RR | 1.38(0.65,2.95 | NS | | Sochacki, 2020 | Low | Reoperation (Debridement for infection) | 4 yrs | Meniscus Repair | Meniscectomy | RR | 0.50(0.06,4.00 | NS | | Sochacki, 2020 | Low | Reoperation (High Tibial Osteotomy) | 4 yrs | Meniscus Repair | Meniscectomy | RR | 0.57(0.07,4.64 | NS | | Sochacki, 2020 | Low | Reoperation (Distal Femoral Osteotomy) | 4 yrs | Meniscus Repair | Meniscectomy | RR | 1.71(0.44,6.63 | NS | | Sochacki, 2020 | Low | Reoperation (Unicompartmental Knee Arthroplasty) | 4 yrs | Meniscus Repair | Meniscectomy | RR | 1.25(0.46,3.41 | NS | | Sochacki, 2020 | Low | Reoperation (Total Knee Arthroplasty) | 4 yrs | Meniscus Repair | Meniscectomy | RR | 0.61(0.45,0.82 | Meniscus Repair | | Sochacki, 2020 | Low | Complications (Any Complication) | 1 mos | Meniscus Repair | Meniscectomy | RR | 1.50(1.14,1.98 | Meniscectomy | | Sochacki, 2020 | Low | Complications (Bursitis) | 1 mos | Meniscus Repair | Meniscectomy | RR | 2.00(0.60,6.64 | NS | | Sochacki, 2020 | Low | Complications (Deficiency Anemia) | 1 mos | Meniscus Repair | Meniscectomy | RR | 1.11(0.68,1.82 | NS | | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--------------------------------------|----------|-----------------------------|-----------------------------|-------------------|-----------------------|----------------------| | Sochacki, 2020 | Low | Complications (Infection) | 1 mos | Meniscus Repair | Meniscectomy | RR | 1.87(1.11,3.13 | Meniscectomy | | Sochacki, 2020 | Low | Complications (Nerve Injury) | 1 mos | Meniscus Repair | Meniscectomy | RR | 4.00(0.25,63.9 | NS | | Sochacki, 2020 | Low | Complications (Sepsis) | 1 mos | Meniscus Repair | Meniscectomy | RR | 1.00(0.11,8.95 | NS | | Sochacki, 2020 | Low | Complications (Wound Complication) | 1 mos | Meniscus Repair | Meniscectomy | RR | 0.33(0.04,2.56 | NS | | Sochacki, 2020 | Low | Complications (Deep Vein Thrombosis) | 1 mos | Meniscus Repair | Meniscectomy | RR | 2.52(1.37,4.62 | Meniscectomy | | Sochacki, 2020 | Low | Complications (Hematoma) | 1 mos | Meniscus Repair | Meniscectomy | RR | 1.18(0.43,3.19 | NS | Figure 7: Meniscus Repair vs. Control/Non-Repair – Summary of Findings ^{*}Control group included Meniscus Plasty Table 25: Meniscus Repair vs. Control/Non-Repair - Composite | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|-----------------------|----------|--|--|--------------------|-------------------------|----------------------| | Zhou,
2016 | Low | Lysholm
Knee Score | 2 yrs | Meniscus Repair with plasty: Normal anterolateral/anteromedial portals assisted with UAHLM portal (1-2 cm inferior to the anterolateral portal) were used. The criteria for a repair were a meniscus with good fixation and a reducible edge w/o degeneration and a rolled edge. | Meniscus Plasty only: Normal anterolateral/anteromedial portals assisted with UAHLM portal (1-2 cm inferior to the anterolateral portal) were used | Mean
Difference | -2 (-
4.58,
0.58) | NS | | Zhou,
2016 | Low | IKDC | 2 yrs | Meniscus Repair with plasty: Normal anterolateral/anteromedial portals assisted with UAHLM portal (1-2 cm inferior to the anterolateral portal) were used. The criteria for a repair were a meniscus with good fixation and a reducible edge w/o degeneration and a rolled edge. | Meniscus Plasty only: Normal anterolateral/anteromedial portals assisted with UAHLM portal (1-2 cm inferior to the anterolateral portal) were used | Mean
Difference | -1 (-
3.47,
1.47) | NS | #### PICO 11: All-Inside vs. Inside Out Figure 8: Inside-Out Technique vs. Other Technique – Summary of Findings Table 26: Inside-Out technique vs. Other Technique - Adverse Events | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--------------------|----------|---|---|-------------------|-----------------------|----------------------| | Papachristou, 2003 | Low | Recurrence | 3 yrs | Inside out arthroscopic technique + Rehab | Meniscal Repair w/ Arthroscopic Assistance: Meniscal Repair w/ Open Procedure + Rehab | RR | 0.50(0.06,4.15) | NS | ### PICO 12: Bio-Enhancement Figure 9: Biological Enhancement of Healing vs. Control/No Enhancement – Summary of Findings | | High | | Low | | | |--|---------------------|-----------|----------------|-----------|-------------| | ↑ Better Outcomes ↓ Worse Outcomes • Not Significant | Kaminski, 2019 High | Liu, 2019 | Everhart, 2019 | Dai, 2019 | Pujol, 2015 | | Composite | | | | | | | IKDC | 1 | _ | | | | | KOOS Symptoms | 霏 | ₽ | | | | | Lysholm Knee Score
Ikeuchi Score | | T | | | | | Function | | | | | | | KOOS ADL | 1 | 1 | | | | | KOOS Sports/Rec | ŕ | ŵ | | |) | | WOMAC | 1 | Ü | | | Ť | | Clinical Efficacy | _ | | | | | | Pain | | | | | | | KOOS Pain | P | P | | | ₽ | | VAS Pain at Rest | 1 | | | | | | VAS Pain | | | | | | | QOL | | | | | | | KOOS QOL | 1 | 1 | | | | | Adverse | | | | | | | events | | | | | | | Reoperation
Failure | P | | T | | | | OA | | | | | | | progression | | | | | | | IL-I (pg/L) | | | | | | | TNF-alpha (pg/L) | | 1 | | | | | IL-6 (pg/L) | | 1 | | | | Kaminski, 2019: Bone Marrow Venting Procedure All other studies: PRP Table 27: PRP vs. Control/No Enhancement - Adverse Events | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|---|----------
--|--|--|-----------------------|----------------------| | Everhart,
2019 | Low | Reoperation (Defined as subsequent
meniscectomy, no evidence of
healing on repeat arthroscopy,
revision meniscal repair, or
subsequent total knee arthroplasty) | 3 yrs | Isolated Meniscal Repair with PRP w/ GPS III Platelet Concentration System and Angel System: GPS II prepared by first drawing 54 mL of blood from the patient followed by combining the blood with 6 mL of ACD-A (citrate anticoagulant) in a disposable separation tube, which was subsequently centrifuged at 3200 revs/min for 15 minutes. After centrifugation, the platelet-poor plasma was removed from the centrifugate, resulting in 6 to 7 mL of PRP, which was extracted to be injected intraoperatively. Angel prepared by 60 mL of whole blood was drawn preoperatively and spun down in the Angel centrifuge set at 2% hematocrit. | No PRP | Author Reported -
Multivariate Cox
Proportional
Hazards | 0.18(0.03,0.59) | PRP | | Everhart,
2019 | Low | Reoperation (Defined as subsequent
meniscectomy, no evidence of
healing on repeat arthroscopy,
revision meniscal repair, or
subsequent total knee arthroplasty) | 3 yrs | Isolated Meniscal Repair with PRP w/ GPS III Platelet Concentration System: Prepared by first drawing 54 mL of blood from the patient followed by combining the blood with 6 mL of ACD-A (citrate anticoagulant) in a disposable separation tube, which was subsequently centrifuged at 3200 revs/min for 15 minutes. After centrifugation, the platelet-poor plasma was removed from the centrifugate, resulting in 6 to 7 mL of PRP, which was extracted to be injected intraoperatively. | No PRP | Author Reported -
Multivariate Cox
Proportional
Hazards | 0.14(0.01,0.67) | NS | | Everhart,
2019 | Low | Reoperation (Defined as subsequent meniscectomy, no evidence of healing on repeat arthroscopy, revision meniscal repair, or subsequent total knee arthroplasty) | 3 yrs | Isolated Meniscal Repair with PRP w/ Angel System: 60 mL of whole blood was drawn preoperatively and spun down in the Angel centrifuge set at 2% hematocrit | No PRP | Author Reported -
Multivariate Cox
Proportional
Hazards | 0.19(0.01,0.88) | NS | | Dai, 2019 | Low | Failure (Patients developing symptoms of joint line pain and/or locking or swelling or requiring repeat arthroscopy) | 2 yrs | Meniscus Repair w/ Inside Out Technique w/ PRP: 37 ml of the patient's blood was collected into a 50-ml injector containing 4 ml 3.8% sodium citrate as anticoagulant. Then, 2 centrifugations were performed: the first at 2000 rpm for 10 min to separate erythrocytes, and the second also at 2000 rpm for 10 min | Meniscus Repair
w/ Inside out
Technique and
No PRP | RR | 0.54(0.05,5.28) | NS | | Pujol,
2015 | Low | Reoperation (Partial or Subtotal
Meniscectomy following repair) | 3 yrs | Open meniscal repair w/ in situ injection of PRP: 6 ml of PRP was obtained using the GPS®III system and injected directly into the repaired lesion before the closure of the wound. | Isolated open
meniscal repair:
Open meniscal
repair | RR | 0.50(0.05,5.01) | NS | Table 28: PRP vs. Control/No Enhancement - Composite | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--|----------|--|--|--|-----------------------|--| | Liu, 2019 | High | Lysholm Knee Score | 6 mos | Arthroscopy combined with Platelet Rich Plasma prepared with specialized centrifuge: 50mL peripheral blood of patients was centrifuged twice at 1400r/min for 10 min. PRP was mixed with activating agent in a 5:1 proportion to get PRP gel which was then sutured to the injured area during meniscus repair. | Arthroscopy Alone: Arthroscopy
system by Stryker, checking the knee
joint thoroughly, and suturing the
meniscus according to the situation of
injury (FasT-Fix or Outside-in Suture) | Mean Difference | 7.9 (6.63, 9.17) | Arthroscopy combined
with Platelet Rich
Plasma prepared with
specialized centrifuge | | Liu, 2019 | High | KOOS Symptoms | 6 mos | Arthroscopy combined with Platelet Rich Plasma prepared with specialized centrifuge: 50mL peripheral blood of patients was centrifuged twice at 1400r/min for 10 min. PRP was mixed with activating agent in a 5:1 proportion to get PRP gel which was then sutured to the injured area during meniscus repair. | Arthroscopy Alone: Arthroscopy
system by Stryker, checking the knee
joint thoroughly, and suturing the
meniscus according to the situation of
injury (FasT-Fix or Outside-in Suture) | Mean Difference | 4.3 (2.57, 6.03) | Arthroscopy combined
with Platelet Rich
Plasma prepared with
specialized centrifuge | | Dai, 2019 | Low | Lysholm Knee Score | 2 yrs | Meniscus Repair w/ Inside Out Technique w/ PRP: 37 ml of the patient's blood was collected into a 50-ml injector containing 4 ml 3.8% sodium citrate as anticoagulant. Then, 2 centrifugations were performed: the first at 2000 rpm for 10 min to separate erythrocytes, and the second also at 2000 rpm for 10 min | Meniscus Repair w/ Inside out
Technique and No PRP | Mean Difference | 5.2 (-2.53,
12.93) | NS | | Dai, 2019 | Low | Ikeuchi Score
(Excellent or Good
grouped together;
Fair and Poor grouped
together) | 2 yrs | Meniscus Repair w/ Inside Out Technique w/ PRP: 37 ml of the patient's blood was collected into a 50-ml injector containing 4 ml 3.8% sodium citrate as anticoagulant. Then, 2 centrifugations were performed: the first at 2000 rpm for 10 min to separate erythrocytes, and the second also at 2000 rpm for 10 min | Meniscus Repair w/ Inside out
Technique and No PRP | RR | 0.89(0.59,1.35) | NS | | Pujol,
2015 | Low | IKDC | 3 yrs | Open meniscal repair w/ in situ injection of PRP: 5 ml of PRP was obtained using the GPS®III system and injected directly into the repaired lesion before the closure of the wound. | Isolated open meniscal repair: Open
meniscal repair | Author Reported -
Independent Samples
t-Test and Mann-
Whitney U Test | N/A | NS | | Pujol,
2015 | Low | KOOS Symptoms | 3 yrs | Open meniscal repair w/ in situ injection of PRP: 5 ml of PRP was obtained using the GPS®III system and injected directly into the repaired lesion before the closure of the wound. | Isolated open meniscal repair: Open
meniscal repair | Author Reported -
Independent Samples
t-Test and Mann-
Whitney U Test | N/A | NS | Table 29: PRP vs. Control/No Enhancement - Function | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--|----------|---|---|--|-----------------------|--| | Liu, 2019 | High | KOOS ADL | 6 mos | Arthroscopy combined with Platelet Rich Plasma prepared with specialized centrifuge: 50mL peripheral blood of patients was centrifuged twice at 1400r/min for 10 min. PRP was mixed with activating agent in a 5:1 proportion to get PRP gel which was then sutured to the injured area during meniscus repair. | Arthroscopy Alone: Arthroscopy system by Stryker, checking the knee joint thoroughly, and suturing the meniscus according to the situation of injury (FasT-Fix or Outside-in Suture) | Mean Difference | 5.3 (4.55, 6.05) | Arthroscopy combined
with Platelet Rich
Plasma prepared with
specialized centrifuge | | Liu, 2019 | High | KOOS Sports/Rec | 6 mos | Arthroscopy combined with Platelet Rich Plasma
prepared with specialized centrifuge: 50mL peripheral blood of patients was centrifuged twice at 1400r/min for 10 min. PRP was mixed with activating agent in a 5:1 proportion to get PRP gel which was then sutured to the injured area during meniscus repair. | Arthroscopy Alone: Arthroscopy
system by Stryker, checking the knee
joint thoroughly, and suturing the
meniscus according to the situation
of injury (FasT-Fix or Outside-in
Suture) | Mean Difference | 5.5 (4.55, 6.45) | Arthroscopy combined
with Platelet Rich
Plasma prepared with
specialized centrifuge | | Liu, 2019 | High | Clinical Efficacy (Judged
according to functional
recovery and pain of the knee
joint: Grouped into Excellent
and Good vs. Not Bad and
Bad) | 6 mos | Arthroscopy combined with Platelet Rich Plasma prepared with specialized centrifuge: 50mL peripheral blood of patients was centrifuged twice at 1400r/min for 10 min. PRP was mixed with activating agent in a 5:1 proportion to get PRP gel which was then sutured to the injured area during meniscus repair. | Arthroscopy Alone: Arthroscopy system by Stryker, checking the knee joint thoroughly, and suturing the meniscus according to the situation of injury (FasT-Fix or Outside-in Suture) | RR | 1.11(0.98,1.27) | NS | | Pujol,
2015 | Low | KOOS ADL | 3 yrs | Open meniscal repair w/ in situ injection of PRP: 5 ml of PRP was obtained using the GPS®III system and injected directly into the repaired lesion before the closure of the wound. | Isolated open meniscal repair: Open
meniscal repair | Author Reported -
Independent Samples
t-Test and Mann-
Whitney U Test | N/A | NS | | Pujol,
2015 | Low | KOOS Sports/Rec | 3 yrs | Open meniscal repair w/ in situ injection of PRP: 5 ml of PRP was obtained using the GPS®III system and injected directly into the repaired lesion before the closure of the wound. | Isolated open meniscal repair: Open
meniscal repair | Author Reported -
Independent Samples
t-Test and Mann-
Whitney U Test | N/A | Control/No
Enhancement | Table 30: PRP vs. Control/No Enhancement - OA Progression | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--|----------|---|---|--------------------|--------------------------------|--| | Liu, 2019 | High | IL-I (pg/L) (Serum
Inflammatory Factors
measured by enzyme linked
immunosorbent assay) | 6 mos | Arthroscopy combined with Platelet Rich Plasma prepared with specialized centrifuge: 50mL peripheral blood of patients was centrifuged twice at 1400r/min for 10 min. PRP was mixed with activating agent in a 5:1 proportion to get PRP gel which was then sutured to the injured area during meniscus repair. | Arthroscopy Alone: Arthroscopy system by Stryker, checking the knee joint thoroughly, and suturing the meniscus according to the situation of injury (FasT-Fix or Outside-in Suture) | Mean
Difference | -11.5 (-
12.89, -
10.11) | Arthroscopy combined
with Platelet Rich Plasma
prepared with specialized
centrifuge | | Liu, 2019 | High | TNF-alpha (pg/L) (Serum
Inflammatory Factors
measured by enzyme linked
immunosorbent assay) | 6 mos | Arthroscopy combined with Platelet Rich Plasma prepared with specialized centrifuge: 50mL peripheral blood of patients was centrifuged twice at 1400r/min for 10 min. PRP was mixed with activating agent in a 5:1 proportion to get PRP gel which was then sutured to the injured area during meniscus repair. | Arthroscopy Alone: Arthroscopy system by Stryker, checking the knee joint thoroughly, and suturing the meniscus according to the situation of injury (FasT-Fix or Outside-in Suture) | Mean
Difference | -15.2 (-
17.85, -
12.55) | Arthroscopy combined
with Platelet Rich Plasma
prepared with specialized
centrifuge | | Liu, 2019 | High | IL-6 (pg/L) (Serum
Inflammatory Factors
measured by enzyme linked
immunosorbent assay) | 6 mos | Arthroscopy combined with Platelet Rich Plasma prepared with specialized centrifuge: 50mL peripheral blood of patients was centrifuged twice at 1400r/min for 10 min. PRP was mixed with activating agent in a 5:1 proportion to get PRP gel which was then sutured to the injured area during meniscus repair. | Arthroscopy Alone: Arthroscopy system by Stryker, checking the knee joint thoroughly, and suturing the meniscus according to the situation of injury (FasT- Fix or Outside-in Suture) | Mean
Difference | -17.5 (-
18.42, -
16.58) | Arthroscopy combined
with Platelet Rich Plasma
prepared with specialized
centrifuge | Table 31: PRP vs. Control/No Enhancement - Pain | Reference
Title | Quality | Outcome
Details | Duration | Treatment Treatment Effect 1 2 Measure (Details) (Details) | | | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--------------------|----------|--|--|--|---------------------------|--| | Liu, 2019 | High | KOOS
Pain | 6 mos | Arthroscopy combined with Platelet Rich Plasma prepared with specialized centrifuge: 50mL peripheral blood of patients was centrifuged twice at 1400r/min for 10 min. PRP was mixed with activating agent in a 5:1 proportion to get PRP gel which was then sutured to the injured area during meniscus repair. | lized centrifuge: 50mL peripheral blood of patients was aged twice at 1400r/min for 10 min. PRP was mixed with g agent in a 5:1 proportion to get PRP gel which was then | | 4.5
(3.20,
5.80) | Arthroscopy combined
with Platelet Rich Plasma
prepared with specialized
centrifuge | | Dai, 2019 | Low | VAS Pain | 2 yrs | Meniscus Repair w/ Inside Out Technique w/ PRP: 37 ml of the patient's blood was collected into a 50-ml injector containing 4 ml 3.8% sodium citrate as anticoagulant. Then, 2 centrifugations were performed: the first at 2000 rpm for 10 min to separate erythrocytes, and the second also at 2000 rpm for 10 min | Meniscus Repair w/ Inside out Technique
and No PRP | Mean Difference | -0.4 (-
1.16,
0.36) | NS | | Pujol,
2015 | Low | KOOS
Pain | 3 yrs | Open meniscal repair w/ in situ injection of PRP: 5 ml of PRP was obtained using the GPS®III system and injected directly into the repaired lesion before the closure of the wound. | Isolated open meniscal repair: Open
meniscal repair | Author Reported -
Independent Samples t-
Test and Mann-Whitney
U Test | N/A | Control/No Enhancement | Table 32: PRP vs. Control/No Enhancement - QOL | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--------------------|----------|---|--|--|------------------------|--| | Liu, 2019 | High | KOOS
QOL | 6 mos | Arthroscopy combined with Platelet Rich Plasma prepared with specialized centrifuge: 50mL peripheral blood of patients was centrifuged twice at 1400r/min for 10 min. PRP was mixed with activating agent in a 5:1 proportion to get PRP gel which was then sutured to the injured area during meniscus repair. | Arthroscopy Alone: Arthroscopy system by Stryker, checking the knee joint thoroughly, and suturing the meniscus according to the situation of injury (FasT-Fix or Outside-in Suture) | Mean Difference | 7.1
(5.84,
8.36) | Arthroscopy combined
with Platelet Rich Plasma
prepared with specialized
centrifuge | | Pujol,
2015 | Low | KOOS
QOL | 3 yrs | Open meniscal repair w/ in situ injection of PRP: 5 ml of PRP was obtained using the GPS®III system and injected directly into the repaired lesion before the closure of the wound. | Isolated open meniscal repair: Open meniscal repair | Author Reported -
Independent Samples t-
Test and Mann-Whitney
U Test | N/A | NS | Table 33: BMVP vs. Control/No Enhancement - Adverse Events |
Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--|----------|---|--|-------------------|----------------------------|---| | Kaminski,
2019 | High | Reoperation (W/ a
meniscectomy or
meniscal repair) | 3 yrs | All-Inside and Outside-In Meniscal Repair w/ Biological Augmentation Using a Bone Marrow Venting Procedure (BMVP) of the intercondylar notch: BMVP was performed with a standard 45 Chondro Pick device. A bloodless field was maintained with plasma radiofrequency device). BMVP was performed w/ 6 to 7 microfracture awl holes into the lateral aspect of the intercondylar notch to release bone marrow elements into the joint. No drainage was applied to the operated knee joint. | All-Inside and Outside-In Meniscal Repair Only: All menisci were repaired using standard procedures (rasping, reduction, fixation); Fixation was performed via the all-inside technique using a FasT-Fix device. In patients w/ a tear extending to the middle body, additional sutures were placed via the outside-in technique | RD | -0.24(-
0.42,-
0.06) | All-Inside and Outside-In
Meniscal Repair w/ Biological
Augmentation Using a Bone
Marrow Venting Procedure
(BMVP) of the intercondylar
notch | Table 34: BMVP vs. Control/No Enhancement - Composite | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--------------------|----------|---|--|----------------------------|---|---| | Kaminski,
2019 | High | IKDC | 2.5 yrs | Difference | | 13.18
(12.87,
13.49) | All-Inside and Outside-In
Meniscal Repair w/ Biological
Augmentation Using a Bone
Marrow Venting Procedure
(BMVP) of the intercondylar
notch | | | Kaminski,
2019 | High | KOOS
Symptoms | 2.5 yrs | All-Inside and Outside-In Meniscal Repair w/ Biological Augmentation Using a Bone Marrow Venting Procedure (BMVP) of the intercondylar notch: BMVP was performed with a standard 45 Chondro Pick device. A bloodless field was maintained with plasma radiofrequency device). BMVP was performed w/ 6 to 7 microfracture awl holes into the lateral aspect of the intercondylar notch to release bone marrow elements into the joint. No drainage was applied to the operated knee joint. | All-Inside and Outside-In Meniscal Repair Only: All menisci were repaired using standard procedures (rasping, reduction, fixation); Fixation was performed via the all-inside technique using a FasT-Fix device. In patients w/ a tear extending to the middle body, additional sutures were placed via the outside-in technique | Mean
Difference | 5.54
(5.29,
5.79) | All-Inside and Outside-In
Meniscal Repair w/ Biological
Augmentation Using a Bone
Marrow Venting Procedure
(BMVP) of the intercondylar
notch | Table 35: BMVP vs. Control/No Enhancement - Function | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect (95% | | Favored
Treatment | |--------------------|---------|--------------------|----------|---|--|--------------------|------------------------------|---| | Kaminski,
2019 | High | WOMAC | 2.5 yrs | All-Inside and Outside-In Meniscal Repair w/ Biological Augmentation Using a Bone Marrow Venting Procedure (BMVP) of the intercondylar notch: BMVP was performed with a standard 45 Chondro Pick device. A bloodless field was maintained with plasma radiofrequency device). BMVP was performed w/ 6 to 7 microfracture awl holes into the lateral aspect of the intercondylar notch to release bone marrow elements into the joint. No drainage was applied to the operated knee joint. | All-Inside and Outside-In Meniscal Repair Only: All menisci were repaired using standard procedures (rasping, reduction, fixation); Fixation was performed via the all-inside technique using a FasT-Fix device. In patients w/ a tear extending to the middle body, additional sutures were placed via the outside-in technique | Mean
Difference | -2.37 (-
2.47, -
2.27) | All-Inside and Outside-In
Meniscal Repair w/ Biological
Augmentation Using a Bone
Marrow Venting Procedure
(BMVP) of the intercondylar
notch | | Kaminski,
2019 | High | KOOS ADL | 2.5 yrs | All-Inside and Outside-In Meniscal Repair w/ Biological Augmentation Using a Bone Marrow Venting Procedure (BMVP) of the intercondylar notch: BMVP was performed with a standard 45 Chondro Pick device. A bloodless field was maintained with plasma radiofrequency device). BMVP was performed w/ 6 to 7 microfracture awl holes into the lateral aspect of the intercondylar notch to release bone marrow elements into the joint. No drainage was applied to the operated knee joint. | All-Inside and Outside-In Meniscal Repair Only: All menisci were repaired using standard procedures (rasping, reduction, fixation); Fixation was performed via the all-inside technique using a FasT-Fix device. In patients w/ a tear extending to the middle body, additional sutures were placed via the outside-in technique | Mean
Difference | 2.87
(2.75,
2.99) | All-Inside and Outside-In
Meniscal Repair w/ Biological
Augmentation Using a Bone
Marrow Venting Procedure
(BMVP) of the intercondylar
notch | | Kaminski,
2019 | High | KOOS
Sports/Rec | 2.5 yrs | All-Inside and Outside-In Meniscal Repair w/ Biological Augmentation Using a Bone Marrow Venting Procedure (BMVP) of the intercondylar notch: BMVP was performed with a standard 45 Chondro Pick device. A bloodless field was maintained with plasma radiofrequency device). BMVP was performed w/ 6 to 7 microfracture awl holes into the lateral aspect of the intercondylar notch to release bone marrow elements into the joint. No drainage was applied to the operated knee joint. | All-Inside and Outside-In Meniscal Repair Only: All menisci were repaired using standard procedures (rasping, reduction, fixation); Fixation was performed via the all-inside technique using a FasT-Fix device. In patients w/ a tear extending to the middle body, additional sutures were placed via the outside-in technique | Mean
Difference | 16.52
(16.05,
16.99) | All-Inside and Outside-In
Meniscal Repair w/ Biological
Augmentation Using a Bone
Marrow Venting Procedure
(BMVP) of the intercondylar
notch | Table 36: BMVP vs. Control/No Enhancement - Pain | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|---------------------|----------
---|--|--------------------|---|---| | Kaminski,
2019 | High | VAS Pain
at Rest | 2.5 yrs | All-Inside and Outside-In Meniscal Repair w/ Biological Augmentation Using a Bone Marrow Venting Procedure (BMVP) of the intercondylar notch: BMVP was performed with a standard 45 Chondro Pick device. A bloodless field was maintained with plasma radiofrequency device). BMVP was performed w/ 6 to 7 microfracture awl holes into the lateral aspect of the intercondylar notch to release bone marrow elements into the joint. No drainage was applied to the operated knee joint. | All-Inside and Outside-In Meniscal Repair Only: All menisci were repaired using standard procedures (rasping, reduction, fixation); Fixation was performed via the all-inside technique using a FasT-Fix device. In patients w/ a tear extending to the middle body, additional sutures were placed via the outside-in technique | Mean
Difference | -1.59 (- 1.64, - 1.54) All-Inside and Outside-Ir Meniscal Repair w/ Biologi Augmentation Using a Bor Marrow Venting Procedur (BMVP) of the intercondyl notch | | | Kaminski,
2019 | High | KOOS
Pain | 2.5 yrs | All-Inside and Outside-In Meniscal Repair w/ Biological Augmentation Using a Bone Marrow Venting Procedure (BMVP) of the intercondylar notch: BMVP was performed with a standard 45 Chondro Pick device. A bloodless field was maintained with plasma radiofrequency device). BMVP was performed w/ 6 to 7 microfracture awl holes into the lateral aspect of the intercondylar notch to release bone marrow elements into the joint. No drainage was applied to the operated knee joint. | All-Inside and Outside-In Meniscal Repair Only: All menisci were repaired using standard procedures (rasping, reduction, fixation); Fixation was performed via the all-inside technique using a FasT-Fix device. In patients w/ a tear extending to the middle body, additional sutures were placed via the outside-in technique | Mean
Difference | 3.35
(3.21,
3.49) | All-Inside and Outside-In
Meniscal Repair w/ Biological
Augmentation Using a Bone
Marrow Venting Procedure
(BMVP) of the intercondylar
notch | Table 37: BMVP vs. Control/No Enhancement - QOL | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--------------------|----------|---|--|--------------------|---------------------------|---| | Kaminski,
2019 | High | KOOS
QOL | 2.5 yrs | All-Inside and Outside-In Meniscal Repair w/ Biological Augmentation Using a Bone Marrow Venting Procedure (BMVP) of the intercondylar notch: BMVP was performed with a standard 45 Chondro Pick device. A bloodless field was maintained with plasma radiofrequency device). BMVP was performed w/ 6 to 7 microfracture awl holes into the lateral aspect of the intercondylar notch to release bone marrow elements into the joint. No drainage was applied to the operated knee joint. | All-Inside and Outside-In Meniscal Repair Only: All menisci were repaired using standard procedures (rasping, reduction, fixation); Fixation was performed via the all-inside technique using a FasT-Fix device. In patients w/ a tear extending to the middle body, additional sutures were placed via the outside-in technique | Mean
Difference | 16.1
(15.65,
16.55) | All-Inside and Outside-In
Meniscal Repair w/ Biological
Augmentation Using a Bone
Marrow Venting Procedure
(BMVP) of the intercondylar
notch | Figure 10: Biological Enhancement of Healing vs. Each Other – Summary of Findings ^{*}PRP formulations vs one another Table 38: PRP vs. Each Other - Adverse Events | Reference
Title | e Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|-----------|--|----------|---|---|--|-----------------------|----------------------| | Everhar
2019 | ' Low | Reoperation (Defined as
subsequent meniscectomy, no
evidence of healing on repeat
arthroscopy, revision meniscal
repair, or subsequent total knee
arthroplasty) | 3 yrs | Isolated Meniscal Repair with PRP w/ GPS III Platelet Concentration System: Prepared by first drawing 54 mL of blood from the patient followed by combining the blood with 6 mL of ACD-A (citrate anticoagulant) in a disposable separation tube, which was subsequently centrifuged at 3200 revs/min for 15 minutes. After centrifugation, the platelet-poor plasma was removed from the centrifugate, resulting in 6 to 7 mL of PRP, which was extracted to be injected intraoperatively. | Isolated Meniscal Repair with PRP w/ Angel Concentrated Platelet Rich Plasma System: 60 mL of whole blood was drawn preoperatively and spun down in the Angel centrifuge set at 2% hematocrit | Author Reported
- Multivariate Cox
Proportional
Hazards | 1.33(0.05,33.60) | NS | #### PICO 13: OA Progression Figure 11: Risk Factor: Meniscal Tear vs. Control Knee (No Tear) – Summary of Findings Table 39: Risk Factor: Meniscal Tear vs. Control Knee (No Tear) - OA Progression | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|-----------------------------|----------|---------------------------------------|-----------------------------|--|-----------------------|----------------------| | Englund, 2009 | Low | Radiographic OA Progression | 2.5 yrs | Minor Radial Tear or Parrot Beak Tear | No Damage to Meniscus | Author Reported - t-test or chi-square/Fisher's test | 3.00(1.40,6.40) | Control | | Englund, 2009 | Low | Radiographic OA Progression | 2.5 yrs | Non-Displaced or Displaced Tear | No Damage to Meniscus | Author Reported - t-test or chi-square/Fisher's test | 7.90(4.40,14.00) | Control | Figure 12: Risk Factor: Meniscectomy vs. Control Knee (No Tear) —Summary of Findings | | Гом | | | | | | | | | |---|------------|-------------|------------|---------------|---------------|-------------|----------------|------------------------|-------------| | | f | | | | | | | 2 | | | ↑ Better Outcomes ↓ Worse Outcomes • Not Significant | Roos, 1998 | Cohen, 2012 | Roos, 2008 | Englund, 2003 | Englund, 2004 | Stein, 2010 | Rockborn, 1995 | Andersson-Molina, 2002 | Hulet, 2001 | | Other | | | | | | | | | | | A/P Tibial Displacement | | | | | | | _ | | | | (mm) | | | | | | | | | | | Anteroposterior | | | | | | | | _ | | | Displacement | | | | | | | | | | | OA | | | | | | | | | | | progression | . = | | | | | | | | | | OA Grade A Index Knee | ₩ | | | | | | | | | | OA Grade A Index | _ | | | | | | | | | | Compartment | • | | | | | | | | | | OA Grade A Healthy | | | | | | | | | | | Compartment | | | | | | | | | | | OA Grade B Index Knee
 Ψ | | | | | | | | | | OA Grade B Index | | | | | | | | | | | Compartment | • | | | | | | | | | | OA Grade B Healthy | | | | | | | | | | | Compartment | | | | | | | | | | | Joint Space Narrowing | | | | | | | | | ₩ | | Cartilage Loss | | • | | | | | | | | | Radiographic OA | | | | | | | | | | | Progression | | | | - | Ŷ | | | | | | OA in the Index Knee | | | | | | | | | | | Tibiofemoral | | | - | | | | | | | | OA in the Index Knee
Patellofemoral | | | | | | | | | | | OA in the Contralateral | | | | | | | | | | | Knee Tibiofemoral | | | | l | | | | | | | OA in the Contralateral | | | | | | | | | | | Knee Patellofemoral | | | | | | | | | | | Joint Space Narrowing > | | | | | | | | | | | Grade 2 | | | | | l | | | | | | Sum Osteophyte | | | | | | | | | | | Compartment Score >2 | | | | J. | | | | | | | Symptomatic OA | | | | Ť | | | | | | | Radiographic and | | | | | | | | | | | Symptomatic OA | | | | | | | | | | | Radiographic OA of | | | | | | | | | | | Contralateral Knee | | | | ₽ | | | | | | | Fairbank Classification | | | | Ĭ | | ₩ | | | | | Fairbank Changes | | | | | | | J | | | | Ahlback Grade 1 Changes | | | | | | | J | 4 | | | Joint Space Reduction | | | | | | | | | | | <50% | | | | | | | | | | | Ahlback Grade 2 Changes | | | | | | | | | | Table 40: Risk Factor: Meniscectomy vs. Control Knee (No Tear) - OA Progression | Reference
Title | Quality | Outcome
Details | | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|---|---------|--------------------------------|--|---|-----------------------|---------------------------| | Hulet, 2001 | Low | Joint Space Narrowing (mean follow-up 12 yrs +/- 1 yr) | | Limited Medial
Meniscectomy | Control Knee (No Tear) RD | | 0.16(0.06,0.27) | Control Knee (No
Tear) | | Cohen, 2012 | Low | Cartilage Loss | 1.5 yrs | Meniscectomy | Control Knee (No Tear) | RR | 1.97(1.27,3.05) | Control Knee (No
Tear) | | Englund, 2003 | Low | Radiographic OA Progression | | Meniscectomy | Control Knee (No Tear) | Author Reported -
Mantel-Haenszel test | 3.20(1.40,7.30) | Control | | Englund, 2003 | Low | Joint Space Narrowing > Grade 2 | 16 yrs | Meniscectomy | Control Knee (No Tear) | Author Reported -
Mantel-Haenszel test | 4.00(0.80,18.80) | NS | | Englund, 2003 | Low | Sum Osteophyte Compartment Score >2 | | Meniscectomy | Control Knee (No Tear) Author Reported - Mantel-Haenszel test | | 7.00(1.80,28.00) | Control | | Englund, 2003 | Low | Symptomatic OA | 16 yrs | Meniscectomy | Control Knee (No Tear) | Author Reported -
Mantel-Haenszel test | 1.60(1.00,2.70) | Control | | Englund, 2003 | Low | Radiographic and Symptomatic OA | 16 yrs | Meniscectomy | Control Knee (No Tear) | Author Reported -
Mantel-Haenszel test | 2.70(0.90,7.70) | NS | | Englund, 2003 | Low | Radiographic OA of Contralateral Knee | 16 yrs | Meniscectomy | Control Knee (No Tear) | Author Reported -
Mantel-Haenszel test | 2.80(1.10,7.40) | Control | | Englund, 2004 | Low | Radiographic OA Progression | 2 yrs | Meniscectomy | Control Knee (No Tear) | RR | 0.62(0.43,0.89) | Meniscectomy | | Englund, 2004 | Low | Radiographic OA Progression | 2 yrs | Meniscectomy | Control Knee (No Tear) | RR | 0.76(0.44,1.32) | NS | | Rockborn, 1995 | Low | Fairbank Changes (mean follow-up 13 yrs, range 10-15 yrs, Ridge
Formation, Narrowing of the Joint Space, Flattening of the Femoral
Condyle) | 10 yrs | Meniscectomy | Control Knee (No Tear) | RR | 4.00(1.70,9.39) | Control Knee (No
Tear) | | Rockborn, 1995 | Low | Ahlback Grade 1 Changes (mean follow-up 13 yrs, range 10-15 yrs, 50% reduction in joint space) | 10 yrs | Meniscectomy | Control Knee (No Tear) | RR | 8.00(1.06,60.43) | Control Knee (No
Tear) | | Roos, 1998 | Low | OA Grade A Index Knee (presence of joint space narrowing of grade 1 or more) | 21 yrs | Meniscectomy | Control Knee (No Tear):
Age-sex matched controls | RR | 4.02(2.37,6.82) | Control Knee (No
Tear) | | Roos, 1998 | Low | OA Grade A Index Compartment (presence of joint space narrowing of grade 1 or more) | 21 yrs | Meniscectomy | Control Knee (No Tear):
Age-sex matched controls | RR | 4.33(2.49,7.55) | Control Knee (No
Tear) | | Roos, 1998 | Low | OA Grade A Healthy Compartment (presence of joint space narrowing of grade 1 or more) | 21 yrs | Meniscectomy | Control Knee (No Tear):
Age-sex matched controls | RR | 3.50(0.80,15.29) | NS | | Roos, 1998 | Low | OA Grade B Index Knee | 21 yrs | Meniscectomy | Control Knee (No Tear):
Age-sex matched controls | RR | 6.48(2.72,15.42) | Control Knee (No
Tear) | | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |----------------------------|---------|---|----------|-------------------------------------|---|-------------------|-----------------------|---------------------------| | Roos, 1998 | Low | OA Grade B Index Compartment | 21 yrs | Meniscectomy | Control Knee (No Tear):
Age-sex matched controls | RR | 6.36(2.67,15.13) | Control Knee (No
Tear) | | Roos, 1998 | Low | OA Grade B Healthy Compartment | 21 yrs | Meniscectomy | Control Knee (No Tear):
Age-sex matched controls | RR | 1.59(0.32,7.96) | NS | | Roos, 1998 | Low | OA Grade A Index Knee | 21 yrs | Meniscectomy | Control Knee (No Tear):
Age-sex matched controls | Author Reported | 9.80(3.50,37.60) | Control | | Roos, 1998 | Low | OA Grade B Index Knee | 21 yrs | Meniscectomy | Control Knee (No Tear):
Age-sex matched controls | Author Reported | 14.00(3.50,121.20) | Control | | Roos, 2008 | Low | OA in the Index Knee Tibiofemoral | 4 yrs | Meniscectomy | Control Knee (No Tear) | RR | 5.91(2.29,15.28) | Control Knee (No
Tear) | | Roos, 2008 | Low | OA in the Index Knee Patellofemoral | 4 yrs | Meniscectomy | Control Knee (No Tear) | RR | 3.00(0.97,9.25) | NS | | Roos, 2008 | Low | OA in the Contralateral Knee Tibiofemoral | 4 yrs | Meniscectomy | Control Knee (No Tear) | RR | 2.29(0.97,5.43) | NS | | Roos, 2008 | Low | OA in the Contralateral Knee Patellofemoral | 4 yrs | Meniscectomy | Control Knee (No Tear) | RR | 2.96(0.40,21.89) | NS | | Andersson-
Molina, 2002 | Low | Fairbank Changes (mean follow-up 14 years, range 12-15 yrs) | 12 yrs | Meniscectomy: Total
Meniscectomy | Control Knee (No Tear) | RR | 1.50(0.51,4.43) | NS | | Andersson-
Molina, 2002 | Low | Joint Space Reduction <50% (mean follow-up 14 years, range 12-15 yrs) | 12 yrs | Meniscectomy: Total
Meniscectomy | Control Knee (No Tear) | RR | 2.50(0.56,11.25) | NS | | Andersson-
Molina, 2002 | Low | Ahlback Grade 1 Changes (mean follow-up 14 years, range 12-15 yrs) | 12 yrs | Meniscectomy: Total
Meniscectomy | Control Knee (No Tear) | RD | 0.39(0.16,0.61) | Control Knee (No
Tear) | | Andersson-
Molina, 2002 | Low | Ahlback Grade 2 Changes (mean follow-up 14 years, range 12-15 yrs) | 12 yrs | Meniscectomy: Total
Meniscectomy | Control Knee (No Tear) | RD | 0.00(0.00,0.00) | NS | | Andersson-
Molina, 2002 | Low | Fairbank Changes (mean follow-up 14 years, range 12-15 yrs) | 12 yrs | Partial Meniscectomy | Control Knee (No Tear) | RR | 1.25(0.40,3.91) | NS | | Andersson-
Molina, 2002 | Low | Joint Space Reduction <50% (mean follow-up 14 years, range 12-15 yrs) | 12 yrs | Partial Meniscectomy | Control Knee (No Tear) | RR | 2.00(0.42,9.58) | NS | | Andersson-
Molina, 2002 | Low | Ahlback Grade 1 Changes (mean follow-up 14 years, range 12-15 yrs) | 12 yrs | Partial Meniscectomy | Control Knee (No Tear) | RD | 0.00(0.00,0.00) | NS | | Andersson-
Molina, 2002 | Low | Ahlback Grade 2 Changes (mean follow-up 14 years, range 12-15 yrs) | 12 yrs | Partial Meniscectomy | Control Knee (No Tear) | RD | 0.06(-0.05,0.16) | NS | | Stein, 2010 | Low | Fairbank Classification (Grades 0 - 3) | 9 yrs | Partial Meniscectomy | Control Knee (No Tear) | Mean Difference | 0.6 (0.15, 1.05) | Control Knee (No
Tear) | Table 41: Risk Factor: Meniscectomy vs. Control Knee (No Tear) - Other | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |---------------------------|---------|--|----------|-------------------------------------|-----------------------------|--|-----------------------|----------------------| | Rockborn, 1995 | Low | A/P Tibial Displacement (mm) (mean follow-up 13 yrs, range 10-15 yrs, 20 deg flexion, 90N load, OSI Laxity Tester) | 10 yrs | Meniscectomy | Control Knee (No
Tear) | Mean Difference | 0.5 (-0.43,
1.43) | NS | | Andersson-Molina,
2002 | Low | Anteroposterior Displacement (mean follow-up 14 years, range 12-15 yrs) | 12 yrs | Meniscectomy: Total
Meniscectomy | Control Knee (No
Tear) | Author Reported - Wilcoxon
Matched-Pairs Test | N/A | NS | | Andersson-Molina,
2002 | Low | Anteroposterior Displacement (mean follow-up 14 years, range 12-15 yrs) | 12 yrs | Partial Meniscectomy | Control Knee (No
Tear) | Author Reported - Wilcoxon
Matched-Pairs Test | N/A | NS | Figure 13: Risk Factor – Total Meniscectomy vs. Partial Meniscectomy – Summary of Findings | | High | Low | |--|------------|------------------------| | ↑ Better Outcomes ↓ Worse Outcomes • Not
Significant | Неde, 1986 | Andersson-Molina, 2002 | | Surgery | | | | Arthroscopic or Open Meniscus Surgery of theother Knee | | | | Reoperation | | | | Further Operation | | | | OAprogression | | | | Radiographic OAProgression | | • | | Fairbank Changes | | | | Ahlback Grade 1 Changes | | - | | Joint Space Reduction<50% | | | | Ahlback Grade 2 Changes | | | | Joint Space Narrowing | | | | Other | | | | Varus Alignment | | | | Valgus Alignment | | | Table 42: Risk Factor: Total Meniscectomy vs. Partial Meniscectomy - OA Progression | Reference
Title | Quality | Outcome
Details | | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |---------------------------|---------|---|--------|-------------------------------------|-----------------------------|-------------------------------------|-----------------------|-------------------------| | Hede, 1986 | High | Joint Space Narrowing 1 yrs Meniscectomy: Total Partial Meniscectomy Meniscectomy | | RR | 0.90(0.55,1.47) | NS | | | | Andersson-Molina,
2002 | Low | Fairbank Changes (mean follow-up 14 years, range 12-15 yrs) | 12 yrs | Meniscectomy: Total
Meniscectomy | Partial
Meniscectomy | RR | 1.20(0.45,3.23) | NS | | Andersson-Molina,
2002 | Low | Joint Space Reduction <50% (mean follow-up 14 years, range 12-15 yrs) | 12 yrs | Meniscectomy: Total
Meniscectomy | Partial
Meniscectomy | RR | 1.25(0.40,3.91) | NS | | Andersson-Molina,
2002 | Low | Ahlback Grade 1 Changes (mean follow-up 14 years, range 12-15 yrs) | 12 yrs | Meniscectomy: Total
Meniscectomy | Partial
Meniscectomy | RD | 0.39(0.16,0.61) | Partial
Meniscectomy | | Andersson-Molina,
2002 | Low | Ahlback Grade 2 Changes (mean follow-up 14 years, range 12-15 yrs) | 12 yrs | Meniscectomy: Total
Meniscectomy | Partial
Meniscectomy | RD | -0.06(-
0.16,0.05) | NS | | Andersson-Molina,
2002 | Low | Radiographic OA Progression (mean follow-up 14 years, range 12-15 yrs) | 12 yrs | Meniscectomy: Total
Meniscectomy | Partial
Meniscectomy | Author Reported -
McNemar's Test | N/A | Partial
Meniscectomy | Table 43: Risk Factor: Total Meniscectomy vs. Partial Meniscectomy - Surgery | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |---------------------------|---------|--|----------|-------------------------------------|-----------------------------|-------------------|-----------------------|----------------------| | Hede, 1986 | High | Further Operation | 1 yrs | Meniscectomy: Total meniscectomy | Partial
Meniscectomy | RR | 0.68(0.20,2.33) | NS | | Andersson-Molina,
2002 | Low | Reoperation (mean follow-up 14 years, range 12-15 yrs) | 12 yrs | Meniscectomy: Total
Meniscectomy | Partial
Meniscectomy | RD | -0.06(-
0.16,0.05) | NS | | Andersson-Molina,
2002 | Low | Arthroscopic or Open Meniscus Surgery of the other Knee (mean follow-up 14 years, range 12-15 yrs) | | Meniscectomy: Total
Meniscectomy | Partial
Meniscectomy | RR | 1.14(0.53,2.48) | NS | Table 44: Risk Factor: Total Meniscectomy vs. Partial Meniscectomy - Other | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |------------------------|---------|---|----------|----------------------------------|-----------------------------|-------------------|-----------------------|----------------------| | Andersson-Molina, 2002 | Low | Varus Alignment (mean follow-up 14 years, range 12-15 yrs) | 12 yrs | Meniscectomy: Total Meniscectomy | Partial Meniscectomy | RR | 1.20(0.71,2.03) | NS | | Andersson-Molina, 2002 | Low | Valgus Alignment (mean follow-up 14 years, range 12-15 yrs) | 12 yrs | Meniscectomy: Total Meniscectomy | Partial Meniscectomy | RR | 3.00(0.34,26.19) | NS | Figure 14: Risk Factor: Meniscal Treatment vs. Meniscal Treatment– Summary of Findings - *Meniscal Treatment vs Meniscal Treatment - o Meniscoplasty vs Total Meniscectomy - o Lateral Meniscectomy vs Medial | | Low | | |---|-------------|----------------| | ↑ Better Outcomes ↓ Worse Outcomes • Not Significant | Zhang, 2018 | Rockborn, 1995 | | Other | | | | Deviation Angle (Meniscoplasty vs Total Meniscectomy) | • | | | Intrinsic Varizing Distance (Meniscoplasty vs Total Meniscectomy) | • | | | Concentration of Proteoglycan Fragments (ug/ml) (Lateral vs Medial) | | | | Radiographic OA Progression (Lateral vs Medial) | | | Table 45: Risk Factor: Meniscal Treatment vs. Meniscal Treatment - Other | Reference
Title | Quality | Outcome
Details | Duration 1 | | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|-----------------------------|------------|---------------|-----------------------------|-------------------|-----------------------|----------------------| | Zhang, 2018 | Low | Deviation Angle | Postop. | Meniscoplasty | Total Meniscectomy | Mean Difference | -0.88 (-1.58, -0.18) | Total Meniscectomy | | Zhang, 2018 | Low | Intrinsic Varizing Distance | Postop. | Meniscoplasty | Total Meniscectomy | Mean Difference | -2.36 (-4.29, -0.43) | Total Meniscectomy | Table 46: Risk Factor: Meniscal Treatment vs. Meniscal Treatment - OA Progression | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--|----------|-----------------------------|-----------------------------|---|-----------------------|----------------------| | Rockborn,
1995 | Low | Concentration of Proteoglycan Fragments (ug/ml) (mean follow-up 13 yrs, range 10-15 yrs) | 10 yrs | Lateral
Meniscectomy | Medial
Meniscectomy | Author Reported - ANOVA | N/A | NS | | Rockborn,
1995 | Low | Radiographic OA Progression (mean follow-up 13 yrs, range 10-15 yrs) | 10 yrs | Lateral
Meniscectomy | Medial
Meniscectomy | Author Reported - Chi-Square, Fischer's
Exact Test | N/A | NS | Figure 15: Risk Factor: Repair vs. Control Knee (No Tear) – Summary of Findings Table 47: Risk Factor: Repair vs. Control Knee (No Tear) - OA Progression | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|---|----------|--|-----------------------------|--------------------|-----------------------|----------------------| | Stein,
2010 | Low | Fairbank Classification
(Grades 0 - 3) | 9 yrs | Meniscal Repair: Performed in full-thickness and vertical longitudinal tears greater than 1 cm in length or bucket-handle tears in the red-red to the red-white zone | Control Knee (No
Tear) | Mean
Difference | 0.19 (-0.11,
0.49) | NS | Figure 16: Risk Factor: Repair vs. Partial Meniscectomy—Summary of Findings Table 48: Risk Factor: Repair vs. Partial Meniscectomy - OA Progression | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|---|----------|--|---|--------------------|-------------------------|----------------------| | Stein,
2010 | Low | Fairbank Classification
(Grades 0 - 3) | 9 yrs | Meniscus Repair: Performed in full-thickness and vertical longitudinal tears greater than 1 cm in length or bucket-handle tears in the red-red to the red-white zone | Partial Meniscectomy: Performed in ruptures in the white-white zone | Mean
Difference | -0.69 (-1.09,
-0.29) | Meniscus
Repair | #### PICO 14: Rehab Figure 17: Bracing vs. Control – Summary of Findings 24 | | Moderate | Low | |--|-------------------------|---------------| | ↑ Better Outcomes ↓ Worse Outcomes • Not Significant | Dammerer, 2019 Moderate | Favreau, 2023 | | Composite | | | | IKDC | | | | KOOS Symptoms | 1 | → | | Function | | | | SF-12 Physical | | | | MARX | | | | KOOS ADL | 1 | • | | KOOS Sports/Rec | ₽. | Ψ. | | Tegner Score | | | | Pain | | | | KOOS Pain | P | Þ | | QOL | _ | | | SF-12 Mental | | _ | | KOOS QOL | T | • | | Adverse Events | | | | Reoperation | | • | ^{*}Dammerer reported multiple follow-ups for each outcome. SoF table defaults to significant for an outcome if any follow-up is significant. See full data tables for complete outcome information. Table 49: Bracing vs. Control - Composite | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|--------------------|----------
--|----------------------------------|-------------------|-----------------------|----------------------| | Dammerer, 2019 | Moderate | IKDC | 1.5 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 2.8 (-7.74, 13.34) | NS | | Dammerer, 2019 | Moderate | IKDC | 3 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 2.4 (-7.76, 12.56) | NS | | Dammerer, 2019 | Moderate | IKDC | 6 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 8.2 (-2.82, 19.22) | NS | | Dammerer, 2019 | Moderate | IKDC | 1 yrs | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 7 (-4.37, 18.37) | NS | | Dammerer, 2019 | Moderate | KOOS Symptoms | 1.5 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 8.8 (-1.24, 18.84) | NS | | Dammerer, 2019 | Moderate | KOOS Symptoms | 3 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 3.2 (-6.27, 12.67) | NS | | Dammerer, 2019 | Moderate | KOOS Symptoms | 6 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 5 (-4.76, 14.76) | NS | | Dammerer, 2019 | Moderate | KOOS Symptoms | 1 yrs | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 13.6 (3.11, 24.09) | Bracing | | Favreau, 2023 | Low | KOOS Symptoms | 7 yrs | Bracing: Wearing a brace | No Bracing: Did not wear a brace | Mean Difference | -11.1 (-14.95, -7.25) | No Bracing | Table 50: Bracing vs. Control - Function | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|--------------------|----------|--|----------------------------------|-------------------|------------------------|----------------------| | Dammerer, 2019 | Moderate | SF-12 Physical | 1.5 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 3 (-3.04, 9.04) | NS | | Dammerer, 2019 | Moderate | SF-12 Physical | 3 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 1.5 (-3.88, 6.88) | NS | | Dammerer, 2019 | Moderate | SF-12 Physical | 6 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 2.7 (-2.58, 7.98) | NS | | Dammerer, 2019 | Moderate | SF-12 Physical | 1 yrs | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 3.7 (-2.13, 9.53) | NS | | Dammerer, 2019 | Moderate | MARX | 1.5 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 0.5 (-1.10, 2.10) | NS | | Dammerer, 2019 | Moderate | MARX | 3 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 0.9 (-2.16, 3.96) | NS | | Dammerer, 2019 | Moderate | MARX | 6 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | -1 (-3.09, 1.09) | NS | | Dammerer, 2019 | Moderate | MARX | 1 yrs | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | -0.7 (-3.02, 1.62) | NS | | Dammerer, 2019 | Moderate | KOOS ADL | 1.5 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 4.9 (-3.64, 13.44) | NS | | Dammerer, 2019 | Moderate | KOOS ADL | 3 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 6.4 (-3.31, 16.11) | NS | | Dammerer, 2019 | Moderate | KOOS ADL | 6 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 6.5 (-1.90, 14.90) | NS | | Dammerer, 2019 | Moderate | KOOS ADL | 1 yrs | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 10.1 (0.05, 20.15) | Bracing | | Dammerer, 2019 | Moderate | KOOS Sports/Rec | 1.5 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 10.1 (-6.84, 27.04) | NS | | Dammerer, 2019 | Moderate | KOOS Sports/Rec | 3 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 8.7 (-5.73, 23.13) | NS | | Dammerer, 2019 | Moderate | KOOS Sports/Rec | 6 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 19 (5.11, 32.89) | Bracing | | Dammerer, 2019 | Moderate | KOOS Sports/Rec | 1 yrs | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 18.4 (2.56, 34.24) | Bracing | | Favreau, 2023 | Low | KOOS ADL | 7 yrs | Bracing: Wearing a brace | No Bracing: Did not wear a brace | Mean Difference | -2.6 (-4.95, -0.25) | No Bracing | | Favreau, 2023 | Low | KOOS Sports/Rec | 7 yrs | Bracing: Wearing a brace | No Bracing: Did not wear a brace | Mean Difference | -16.6 (-22.22, -10.98) | No Bracing | | Favreau, 2023 | Low | Tegner Score | 7 yrs | Bracing: Wearing a brace | No Bracing: Did not wear a brace | Mean Difference | 0.4 (-0.05, 0.85) | NS | Table 51: Bracing vs. Control - Pain | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|--------------------|----------|--|----------------------------------|-------------------|-----------------------|----------------------| | Dammerer, 2019 | Moderate | KOOS Pain | 1.5 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 4.1 (-6.49, 14.69) | NS | | Dammerer, 2019 | Moderate | KOOS Pain | 3 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 6.6 (-4.45, 17.65) | NS | | Dammerer, 2019 | Moderate | KOOS Pain | 6 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 7.9 (-1.37, 17.17) | NS | | Dammerer, 2019 | Moderate | KOOS Pain | 1 yrs | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 10.1 (-0.79, 20.99) | NS | | Favreau, 2023 | Low | KOOS Pain | 7 yrs | Bracing: Wearing a brace | No Bracing: Did not wear a brace | Mean Difference | -2.9 (-5.64, -0.16) | No Bracing | Table 52: Bracing vs. Control - QOL | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|--------------------|----------|--|----------------------------------|-------------------|-----------------------|----------------------| | Dammerer, 2019 | Moderate | SF-12 Mental | 1.5 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | -1.7 (-7.87, 4.47) | NS | | Dammerer, 2019 | Moderate | SF-12 Mental | 3 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | -3.5 (-8.06, 1.06) | NS | | Dammerer, 2019 | Moderate | SF-12 Mental | 6 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | -0.5 (-5.37, 4.37) | NS | | Dammerer, 2019 | Moderate | SF-12 Mental | 1 yrs | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 2.5 (-2.58, 7.58) | NS | | Dammerer, 2019 | Moderate | KOOS QOL | 1.5 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 6.8 (-7.39, 20.99) | NS | | Dammerer, 2019 | Moderate | KOOS QOL | 3 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 12.9 (-1.08, 26.88) | NS | | Dammerer, 2019 | Moderate | KOOS QOL | 6 mos | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 17.7 (4.24, 31.16) | Bracing | | Dammerer, 2019 | Moderate | KOOS QOL | 1 yrs | Bracing: unloading knee brace worn for minimum 5h a day for 12 weeks | Control | Mean Difference | 13.6 (-1.60, 28.80) | NS | | Favreau, 2023 | Low | KOOS QOL | 7 yrs | Bracing: Wearing a brace | No Bracing: Did not wear a brace | Mean Difference | -15.4 (-21.73, -9.07) | No Bracing | Table 53: Bracing vs. Control – Adverse Events | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|---|----------|-----------------------------|----------------------------------|-------------------|-----------------------|----------------------| | Favreau, 2023 | Low | Reoperation (Performing a secondary meniscectomy) | 7 yrs | Bracing: Wearing a brace | No Bracing: Did not wear a brace | RR | 1.65(1.08,2.53) | No Bracing | Figure 18: Rehabilitation/Rehabilitation Interventions vs. Control Summary of Findings | | High | Moderate | | Low | | | |---|----------------|----------|----------|------------|-------------------------|---| | ↑ Better Outcomes ↓ Worse Outcomes • Not Significant | Oravitan, 2013 | Li, 2006 | Ke, 2022 | Park, 2020 | Favreau, 2023 (Flexion) | | | Composite | | | | | | | | KOOS Symptoms | | | | ₽. |
| 4 | | Lysholm Knee Score | | | 1 | | | | | Function | | | | | | | | KOOS ADL | | | | T. | P. | | | KOOS Sports/Rec | 1 | | | Tr. | | 2 | | Tegner Score | | | | | Ψ. | 4 | | ROM (degrees) | | | Ŷ. | | | | | Onset Time | 1 | | | | | | | Offset Time | Tr. | | | | | | | Peak Torque - Flexor | | P | | | | | | Peak Torque - Extensor | | ₽. | | | | | | Total Work - Flexor | | P | | | | | | Total Work - Extensor | | ~~~~ | | | | | | Torque Accelerating Energy- Flexor | | P | | | | | | Torque Accelerating Energy- Extensor | | ₽. | | | | | | Average Power - Flexor | | P | | | | | | Average Power - Extensor | | TP. | | | | | | One-Leg Standing Test (s) | | | | | | | | Relative Peak Torque(nm/kg) | | | 伞 | | | | | Power (w) | | | P | | | | ^{*}Ke, and Park reported multiple follow-ups for each outcome. SoF table defaults to significant for an outcome if any iteration is significant. See full data tables for complete outcome information. | | High | Moderate | | row | | | |--|----------------|----------|----------|------------|-------------------------|--------------------------------| | ↑ Better Outcomes ↓ Worse Outcomes • Not Significant | Oravitan, 2013 | Li, 2006 | Ke, 2022 | Park, 2020 | Favreau, 2023 (Flexion) | Favreau, 2023 (Weight Bearing) | | Other | | | | | | | | Knee Muscles' Force | | | | | | | | Pain | | | | | | | | KOOS Pain | | | | | ₽. | | | VAS Pain at Rest | | | P | | | | | QOL | | | | | | | | KOOS QOL | | | | ₽P | | • | | Adverse Events | | | | | | | | Reoperation | | | | | | | #### Oravitan: • Rehab + Electromyographic Biofeedback vs Rehab #### Li: • Isokinetic Exercise vs No Isokinetic Exercise #### Ke: • Blood Flow Restriction Training w/ Rehab vs Rehab #### Park: • Exercise Program vs Control #### Favreau: - Flexion < 90 degrees vs Full Flexion - Weight Bearing vs No Weight Bearing ^{*}Li reported multiple sub-outcomes for each umbrella outcome. ^{*}Favreau reported multiple interventions Table 54: Rehabilitation vs. Control - Composite | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|-----------------------|----------|--|--|--------------------|------------------------------|---| | Favreau,
2023 | Low | KOOS
Symptoms | 7 yrs | Flexion < 90 degrees | Full Flexion | Mean
Difference | 5.4 (-
3.67,
14.47) | NS | | Favreau,
2023 | Low | KOOS
Symptoms | 7 yrs | Weight Bearing: Immediately after surgery | Non-Weight Bearing | Mean
Difference | -8.8 (-
12.23, -
5.37) | Non-Weight Bearing | | Ke, 2022 | Moderate | Lysholm
Knee Score | Postop. | Blood Flow Restriction Training w/ Rehabilitation | Rehabilitation | Mean
Difference | 1.89 (-
3.75,
7.53) | NS | | Ke, 2022 | Moderate | Lysholm
Knee Score | 1 mos | Blood Flow Restriction Training w/ Rehabilitation | Rehabilitation | Mean
Difference | 10.68
(6.51,
14.85) | Blood Flow
Restriction Training
w/ Rehabilitation | | Ke, 2022 | Moderate | Lysholm
Knee Score | 2 mos | Blood Flow Restriction Training w/ Rehabilitation | Rehabilitation | Mean
Difference | 12.96
(9.58,
16.34) | Blood Flow
Restriction Training
w/ Rehabilitation | | Oravitan,
2013 | High | KOOS
Symptoms | 2 mos | Rehabilitation + Electromyographic Biofeedback: Daily between the 1st and 8th week of surveillance. The surface EMG was assessed using an EMG-BFB device (Myomed 134) with 2 channels, an EMG sensitivity of 0.28 V $-$ 150 mV, a raw EMG signal of 1,000 Hz, a processed signal of 100 Hz and an amplification of 10.8X | Rehabilitation: Same rehabilitation program as experimental group without the electromyographic biofeedback. | Mean
Difference | 0.72 (-
2.54,
3.98) | NS | | Park, 2020 | Low | KOOS
Symptoms | 2 wks | Exercise Program: 1 text message sent per week after discharge excluding week 2, 20 minutes per exercise, purpose to strengthen muscles for ADL's | Control: Patients in control group received general postop discharge education through a leaflet | Mean
Difference | 13.6
(9.31,
17.89) | Exercise Program | | Park, 2020 | Low | KOOS
Symptoms | 1.5 mos | Exercise Program: 1 text message sent per week after discharge excluding week 2, 20 minutes per exercise, purpose to strengthen muscles for ADL's | Control: Patients in control group received general postop discharge education through a leaflet | Mean
Difference | 12.36
(6.59,
18.13) | Exercise Program | Table 55: Rehabilitation vs. Control - Function | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|---------------------------|----------|---|-----------------------------|--|-----------------------------|---| | Favreau,
2023 | Low | KOOS ADL | 7 yrs | Flexion < 90 degrees | Full Flexion | Mean
Difference | 3.2 (0.22,
6.18) | Flexion < 90 degrees | | Favreau,
2023 | Low | KOOS Sports/Rec | 7 yrs | Flexion < 90 degrees | Full Flexion | Mean
Difference | -0.1 (-
9.32,
9.12) | NS | | Favreau,
2023 | Low | Tegner Score | 7 yrs | Flexion < 90 degrees | Full Flexion | Mean
Difference | -0.8 (-
1.14, -
0.46) | Full Flexion | | Favreau,
2023 | Low | KOOS ADL | 7 yrs | Weight Bearing: Immediately after surgery | Non-Weight Bearing | Mean
Difference | 2.1 (-1.13,
5.33) | NS | | Favreau,
2023 | Low | KOOS Sports/Rec | 7 yrs | Weight Bearing: Immediately after surgery | Non-Weight Bearing | Mean
Difference | -10 (-
14.99, -
5.01) | Non-Weight Bearing | | Favreau,
2023 | Low | Tegner Score | 7 yrs | Weight Bearing: Immediately after surgery | Non-Weight Bearing | Mean
Difference | -1.1 (-
1.64, -
0.56) | Non-Weight Bearing | | Ke, 2022 | Moderate | One-Leg Standing Test (s) | Postop. | Blood Flow Restriction Training w/ Rehabilitation | Rehabilitation | Author
Reported -
ANOVA,
Kruskal-Wallis | N/A | NS | | Ke, 2022 | Moderate | One-Leg Standing Test (s) | 1 mos | Blood Flow Restriction Training w/ Rehabilitation | Rehabilitation | Author
Reported -
ANOVA,
Kruskal-Wallis | N/A | Blood Flow Restriction
Training w/ Routine
Rehabilitation | | Ke, 2022 | Moderate | One-Leg Standing Test (s) | 2 mos | Blood Flow Restriction Training w/ Rehabilitation | Rehabilitation | Author
Reported -
ANOVA,
Kruskal-Wallis | N/A | Blood Flow Restriction
Training w/ Routine
Rehabilitation | | Ke, 2022 | Moderate | ROM (degrees) | Postop. | Blood Flow Restriction Training w/ Rehabilitation | Rehabilitation | Mean
Difference | -2.84 (-
7.37,
1.69) | NS | | Ke, 2022 | Moderate | ROM (degrees) | 1 mos | Blood Flow Restriction Training w/ Rehabilitation | Rehabilitation | Mean
Difference | 6.41
(2.89,
9.93) | Blood Flow Restriction
Training w/
Rehabilitation | | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|---|----------|--|--|--------------------|-----------------------------|---| | Ke, 2022 | Moderate | ROM (degrees) | 2 mos | Blood Flow Restriction Training w/ Rehabilitation | Rehabilitation | Mean
Difference | 6.51
(3.41,
9.61) | Blood Flow Restriction
Training w/
Rehabilitation | | Ke, 2022 | Moderate | Relative Peak Torque (nm/kg) | Postop. | Blood Flow Restriction Training w/ Rehabilitation | Rehabilitation | Mean
Difference | -0.06 (-
0.36,
0.24) | NS | | Ke, 2022 | Moderate | Relative Peak Torque (nm/kg) | 1 mos | Blood Flow Restriction Training w/ Rehabilitation | Rehabilitation | Mean
Difference | 0.35 (-
0.04,
0.74) | NS | | Ke, 2022 | Moderate | Relative Peak Torque (nm/kg) | 2 mos | Blood Flow Restriction Training w/ Rehabilitation | Rehabilitation | Mean
Difference | 0.56
(0.13,
0.99) | Blood Flow Restriction
Training w/
Rehabilitation | | Ke, 2022 | Moderate | Power (w) | Postop. | Blood Flow Restriction Training w/ Rehabilitation | Rehabilitation | Mean
Difference | 0.84 (-
17.03,
18.71) | NS | | Ke, 2022 | Moderate | Power (w) | 1 mos | Blood Flow Restriction Training w/ Rehabilitation | Rehabilitation | Mean
Difference | 27.26 (-
0.25,
54.77) | NS | | Ke, 2022 | Moderate | Power (w) | 2 mos | Blood Flow Restriction Training w/ Rehabilitation | Rehabilitation | Mean
Difference | 37.02
(17.56,
56.48) | Blood Flow Restriction
Training w/
Rehabilitation | | Li, 2006 | Moderate | Peak Torque - Flexor (60 degrees;
measured in N m) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional
rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 15.16
(4.54,
25.78) | Isokinetic Exercise | | Li, 2006 | Moderate | Peak Torque - Flexor (120 degrees;
measured in N m) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 11.57
(3.35,
19.79) | Isokinetic Exercise | | Li, 2006 | Moderate | Peak Torque - Flexor (180 degrees;
measured in N m) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 7.97
(1.59,
14.35) | Isokinetic Exercise | | Li, 2006 | Moderate | Peak Torque - Extensor (60 degrees;
measured in N m) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 23.6
(6.17,
41.03) | Isokinetic Exercise | | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|---|----------|--|--|--------------------|----------------------------|----------------------| | Li, 2006 | Moderate | Peak Torque - Extensor (120
degrees; measured in N m) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 16.33
(4.37,
28.29) | Isokinetic Exercise | | Li, 2006 | Moderate | Peak Torque - Extensor (180 degrees; measured in N m) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 7.63 (-
9.29,
24.55) | NS | | Li, 2006 | Moderate | Total Work - Flexor (60 degrees;
measured in J) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 21.78
(5.83,
37.73) | Isokinetic Exercise | | Li, 2006 | Moderate | Total Work - Flexor (120 degrees;
measured in J) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 14.14
(0.53,
27.75) | Isokinetic Exercise | | Li, 2006 | Moderate | Total Work - Flexor (180 degrees;
measured in J) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 6.79
(0.43,
13.15) | Isokinetic Exercise | | Li, 2006 | Moderate | Total Work - Extensor (60 degrees;
measured in J) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 26.84
(7.34,
46.34) | Isokinetic Exercise | | Li, 2006 | Moderate | Total Work - Extensor (120 degrees;
measured in J) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 20.51
(0.79,
40.23) | Isokinetic Exercise | | Li, 2006 | Moderate | Total Work - Extensor (180 degrees;
measured in J) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 12.24
(0.57,
23.91) | Isokinetic Exercise | | Li, 2006 | Moderate | Torque Accelerating Energy - Flexor
(60 degrees; measured in J) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 1.53
(0.03,
3.03) | Isokinetic Exercise | | Li, 2006 | Moderate | Torque Accelerating Energy - Flexor
(120 degrees; measured in J) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 5.08
(1.48,
8.68) | Isokinetic Exercise | | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|--|----------|--|--|--------------------|---------------------------|----------------------| | Li, 2006 | Moderate | Torque Accelerating Energy - Flexor
(180 degrees; measured in J) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 3.95
(0.76,
7.14) | Isokinetic Exercise | | Li, 2006 | Moderate | Torque Accelerating Energy -
Extensor (60 degrees; measured in
J) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 2.85 (-
0.34,
6.04) | NS | | Li, 2006 | Moderate | Torque Accelerating Energy -
Extensor (120 degrees; measured in
J) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 2.62
(0.26,
4.98) | Isokinetic Exercise | | Li, 2006 | Moderate | Torque Accelerating Energy -
Extensor (180 degrees; measured in
J) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 0.77 (-
3.85,
5.39) | NS | | Li, 2006 | Moderate | Average Power - Flexor (60 degrees;
measured in W) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both
knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 11.14
(0.52,
21.76) | Isokinetic Exercise | | Li, 2006 | Moderate | Average Power - Flexor (120 degrees; measured in W) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 13.55
(0.59,
26.51) | Isokinetic Exercise | | Li, 2006 | Moderate | Average Power - Flexor (180
degrees; measured in W) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 12.48
(3.52,
21.44) | Isokinetic Exercise | | Li, 2006 | Moderate | Average Power - Extensor (60 degrees; measured in W) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 15.09
(4.13,
26.05) | Isokinetic Exercise | | Li, 2006 | Moderate | Average Power - Extensor (120 degrees; measured in W) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 19.47
(5.11,
33.83) | Isokinetic Exercise | | Li, 2006 | Moderate | Average Power - Extensor (180
degrees; measured in W) | 2 mos | Isokinetic Exercise: 2nd to 4th days postoperative began to carry out the functional rehabilitation, and received isokinetic exercise in both knees' flexor and extensors with the Cybex-6000 isokinetic dynamometer 3 weeks later | No Isokinetic Exercise: Did receive routine blocking, physiotherapy, massage, etc. | Mean
Difference | 21.29
(5.65,
36.93) | Isokinetic Exercise | | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|---|----------|--|---|--------------------|-----------------------------------|--| | Oravitan,
2013 | High | KOOS ADL | 2 mos | Rehabilitation + Electromyographic Biofeedback: Daily between the 1st and 8th week of surveillance. The surface EMG was assessed using an EMG-BFB device (Myomed 134) with 2 channels, an EMG sensitivity of 0.28 V – 150 mV, a raw EMG signal of 1,000 Hz, a processed signal of 100 Hz and an amplification of 10.8X | Rehabilitation: Same
rehabilitation program as
experimental group without the
electromyographic biofeedback. | Mean
Difference | 2.78 (-
1.13,
6.69) | NS | | Oravitan,
2013 | High | KOOS Sports/Rec | 2 mos | Rehabilitation + Electromyographic Biofeedback: Daily between the 1st and 8th week of surveillance. The surface EMG was assessed using an EMG-BFB device (Myomed 134) with 2 channels, an EMG sensitivity of 0.28 V – 150 mV, a raw EMG signal of 1,000 Hz, a processed signal of 100 Hz and an amplification of 10.8X | Rehabilitation: Same rehabilitation program as experimental group without the electromyographic biofeedback. | Mean
Difference | 5.17
(0.78,
9.56) | Rehabilitation +
Electromyographic
Biofeedback | | Oravitan,
2013 | High | Onset Time (Latency period needed for initiating the muscular contraction after an acoustic signal. Important for neuromuscular coordination recovery.) | 2 mos | Rehabilitation + Electromyographic Biofeedback: Daily between the 1st and 8th week of surveillance. The surface EMG was assessed using an EMG-BFB device (Myomed 134) with 2 channels, an EMG sensitivity of 0.28 V – 150 mV, a raw EMG signal of 1,000 Hz, a processed signal of 100 Hz and an amplification of 10.8X | Rehabilitation: Same rehabilitation program as experimental group without the electromyographic biofeedback. | Mean
Difference | -50.49 (-
75.18, -
25.80) | Rehabilitation +
Electromyographic
Biofeedback | | Oravitan,
2013 | High | Offset Time (Latency period needed for relaxation of the muscle after an acoustic signal. Important for neuromuscular coordination recovery.) | 2 mos | Rehabilitation + Electromyographic Biofeedback: Daily between the 1st and 8th week of surveillance. The surface EMG was assessed using an EMG-BFB device (Myomed 134) with 2 channels, an EMG sensitivity of 0.28 V – 150 mV, a raw EMG signal of 1,000 Hz, a processed signal of 100 Hz and an amplification of 10.8X | Rehabilitation: Same
rehabilitation program as
experimental group without the
electromyographic biofeedback. | Mean
Difference | -112.14 (-
143.50, -
80.78) | Rehabilitation +
Electromyographic
Biofeedback | | Park, 2020 | Low | KOOS ADL | 2 wks | Exercise Program: 1 text message sent per week after discharge excluding week 2, 20 minutes per exercise, purpose to strengthen muscles for ADL's | Control: Patients in control
group received general postop
discharge education through a
leaflet | Mean
Difference | 9.78
(4.69,
14.87) | Exercise Program | | Park, 2020 | Low | KOOS ADL | 1.5 mos | Exercise Program: 1 text message sent per week after discharge excluding week 2, 20 minutes per exercise, purpose to strengthen muscles for ADL's | Control: Patients in control
group received general postop
discharge education through a
leaflet | Mean
Difference | 6.85
(3.79,
9.91) | Exercise Program | | Park, 2020 | Low | KOOS Sports/Rec | 2 wks | Exercise Program: 1 text message sent per week after discharge excluding week 2, 20 minutes per exercise, purpose to strengthen muscles for ADL's | Control: Patients in control
group received general postop
discharge education through a
leaflet | Mean
Difference | 9.81
(2.99,
16.63) | Exercise Program | | Park, 2020 | Low | KOOS Sports/Rec | 1.5 mos | Exercise Program: 1 text message sent per week after discharge excluding week 2, 20 minutes per exercise, purpose to strengthen muscles for ADL's | Control: Patients in control
group received general postop
discharge education through a
leaflet | Mean
Difference | 4.81
(2.18,
7.44) | Exercise Program | | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--------------------|----------|---|---|--------------------|--------------------------|----------------------| | Park, 2020 | Low | KOOS ADL | 2 wks | Exercise Program: 1 text message sent per week after discharge excluding week 2, 20 minutes per exercise, purpose to strengthen muscles for ADL's | Control: Patients in control
group received general postop
discharge education through a
leaflet | Mean
Difference | 9.78
(4.69,
14.87) | Exercise Program | | Park, 2020 | Low | KOOS ADL | 1.5 mos | Exercise Program: 1 text message sent per week after discharge excluding week 2, 20 minutes per exercise, purpose to strengthen muscles for ADL's | Control: Patients in control
group received general postop
discharge education through a
leaflet | Mean
Difference | 6.85
(3.79,
9.91) | Exercise Program | | Park, 2020 | Low | KOOS Sports/Rec | 2 wks | Exercise Program: 1 text message sent per week after discharge excluding week 2, 20 minutes per exercise, purpose to strengthen muscles for ADL's | Control: Patients in control
group received general postop
discharge education through a
leaflet | Mean
Difference | 9.81
(2.99,
16.63) | Exercise Program | | Park, 2020 | Low | KOOS Sports/Rec | 1.5 mos | Exercise Program: 1 text message sent per week after discharge excluding week 2, 20 minutes per exercise, purpose to strengthen muscles for ADL's | Control: Patients in control
group received general postop
discharge education through a
leaflet | Mean
Difference | 4.81
(2.18,
7.44) | Exercise Program | Table 56: Rehabilitation vs. Control - Other | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--|----------
--|--|--------------------|----------------------------|----------------------| | Oravitan,
2013 | High | Knee Muscles' Force
(Muscular Strength
of Flexors) | 2 mos | Rehabilitation + Electromyographic Biofeedback: Daily between the 1st and 8th week of surveillance. The surface EMG was assessed using an EMG-BFB device (Myomed 134) with 2 channels, an EMG sensitivity of 0.28 V – 150 mV, a raw EMG signal of 1,000 Hz, a processed signal of 100 Hz and an amplification of 10.8X | Rehabilitation: Same rehabilitation program as experimental group without the electromyographic biofeedback. | Mean
Difference | -2.02 (-
5.07,
1.03) | NS | | Oravitan,
2013 | High | Knee Muscles' Force
(Muscular Strength
of Extensors) | 2 mos | Rehabilitation + Electromyographic Biofeedback: Daily between the 1st and 8th week of surveillance. The surface EMG was assessed using an EMG-BFB device (Myomed 134) with 2 channels, an EMG sensitivity of 0.28 V – 150 mV, a raw EMG signal of 1,000 Hz, a processed signal of 100 Hz and an amplification of 10.8X | Rehabilitation: Same rehabilitation program as experimental group without the electromyographic biofeedback. | Mean
Difference | 0.72 (-
2.54,
3.98) | NS | Table 57: Rehabilitation vs. Control - Pain | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|---------------------|----------|--|--|--------------------|------------------------------|---| | Favreau,
2023 | Low | KOOS Pain | 7 yrs | Flexion < 90 degrees | Full Flexion | Mean
Difference | 10.2
(1.30,
19.10) | Flexion < 90 degrees | | Favreau,
2023 | Low | KOOS Pain | 7 yrs | Weight Bearing: Immediately after surgery | Non-Weight Bearing | Mean
Difference | -1 (-4.63,
2.63) | NS | | Ke, 2022 | Moderate | VAS Pain
at Rest | Postop. | Blood Flow Restriction Training w/ Rehabilitation | Rehabilitation | Mean
Difference | 0.11 (-
0.48,
0.70) | NS | | Ke, 2022 | Moderate | VAS Pain
at Rest | 1 mos | Blood Flow Restriction Training w/ Rehabilitation | Rehabilitation | Mean
Difference | -1.05 (-
1.51, -
0.59) | Blood Flow
Restriction Training
w/ Rehabilitation | | Ke, 2022 | Moderate | VAS Pain
at Rest | 2 mos | Blood Flow Restriction Training w/ Rehabilitation | Rehabilitation | Mean
Difference | -1 (-1.42,
-0.58) | Blood Flow
Restriction Training
w/ Rehabilitation | | Oravitan,
2013 | High | KOOS Pain | 2 mos | Rehabilitation + Electromyographic Biofeedback: Daily between the 1st and 8th week of surveillance. The surface EMG was assessed using an EMG-BFB device (Myomed 134) with 2 channels, an EMG sensitivity of 0.28 V – 150 mV, a raw EMG signal of 1,000 Hz, a processed signal of 100 Hz and an amplification of 10.8X | Rehabilitation: Same rehabilitation program as experimental group without the electromyographic biofeedback. | Mean
Difference | -2.02 (-
5.07,
1.03) | NS | | Park, 2020 | Low | KOOS Pain | 2 wks | Exercise Program: 1 text message sent per week after discharge excluding week 2, 20 minutes per exercise, purpose to strengthen muscles for ADL's | Control: Patients in control group received general postop discharge education through a leaflet | Mean
Difference | 4.17 (-
0.75,
9.09) | NS | | Park, 2020 | Low | KOOS Pain | 1.5 mos | Exercise Program: 1 text message sent per week after discharge excluding week 2, 20 minutes per exercise, purpose to strengthen muscles for ADL's | Control: Patients in control group received general postop discharge education through a leaflet | Mean
Difference | 2.13 (-
1.15,
5.41) | NS | Table 58: Rehabilitation vs. Control - QOL | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|--------------------|----------|--|--|--------------------|------------------------------|-----------------------| | Favreau,
2023 | Low | KOOS
QOL | 7 yrs | Flexion < 90 degrees | Full Flexion | Mean
Difference | -2.8 (-
12.16,
6.56) | NS | | Favreau,
2023 | Low | KOOS
QOL | 7 yrs | Weight Bearing: Immediately after surgery | Non-Weight Bearing | Mean
Difference | -7.7 (-
14.50, -
0.90) | Non-Weight
Bearing | | Oravitan,
2013 | High | KOOS
QOL | 2 mos | Rehabilitation + Electromyographic Biofeedback: Daily between the 1st and 8th week of surveillance. The surface EMG was assessed using an EMG-BFB device (Myomed 134) with 2 channels, an EMG sensitivity of 0.28 V – 150 mV, a raw EMG signal of 1,000 Hz, a processed signal of 100 Hz and an amplification of 10.8X | Rehabilitation: Same rehabilitation program as experimental group without the electromyographic biofeedback. | Mean
Difference | 1.78 (-
3.10,
6.66) | NS | | Park, 2020 | Low | KOOS
QOL | 2 wks | Exercise Program: 1 text message sent per week after discharge excluding week 2, 20 minutes per exercise, purpose to strengthen muscles for ADL's | Control: Patients in control group received general postop discharge education through a leaflet | Mean
Difference | 10.81
(5.96,
15.66) | Exercise
Program | | Park, 2020 | Low | KOOS
QOL | 1.5 mos | Exercise Program: 1 text message sent per week after discharge excluding week 2, 20 minutes per exercise, purpose to strengthen muscles for ADL's | Control: Patients in control group received general postop discharge education through a leaflet | Mean
Difference | 5.52
(1.08,
9.96) | Exercise
Program | Table 59: Rehabilitation vs. Control - Adverse Events | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|---|----------|---|-----------------------------|-------------------|-----------------------|----------------------| | Favreau, 2023 | Low | Reoperation (Performing a secondary meniscectomy) | 7 yrs | Weight Bearing: Immediately after surgery | Non-Weight Bearing | RR | 1.78(1.00,3.16) | NS | | Favreau, 2023 | Low | Reoperation (Performing a secondary meniscectomy) | 7 yrs | Flexion < 90 degrees | Full Flexion | RR | 3.05(0.48,19.45) | NS | Figure 19: Rehabilitation Type vs. Rehabilitation Type - Summary of Findings | | Moderate | Low | |--|------------|------------| | ↑ Better Outcomes ↓ Worse Outcomes • Not Significant | Lind, 2013 | Chen, 2022 | | Composite | | | | IKDC | | 1 | | KOOS Symptoms | | | | Function | | | | KOOS ADL | | | | KOOS Sports/Rec | | | | Tegner Score | | | | Flexion | | • | | Extension | | 1 | | 60 degrees/s extension | | | | 60 degrees/s flexion | | | | 180 degrees/s extension | | | | 180 degrees/s flexion | | • | | Y-Balance Test | | T | | Pain | | | | KOOS Pain | | | | QOL | | | | KOOS QOL | | | | Adverseevents | | | | Failed Healing | Ψ. | | ^{*}Lind and Chen reported multiple follow-ups for each outcome. SoF table defaults to significant for an outcome if any follow-up is significant. See full data tables for complete outcome information. ^{*}Chen also reported multiple sub-outcomes for the Y-Balance Test umbrella outcome. Table 60: Rehabilitation Type vs. Rehabilitation Type - Adverse Events | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|--|----------|--|---|-------------------|-----------------------|----------------------| | Lind, 2013 | Moderate | Failed Healing (Non-healed
menisci at second-look
arthroscopy) | 1 yrs | Restricted Rehabilitation w/ Bracing: 6 weeks of hinged brace use with a gradual increase ROM to 90 degrees and only touch weightbearing during the 6 weeks. | Rehabilitation: 2 weeks range of motion, 0 - 90 degrees, no brace, and touch weightbearing, with unrestricted activity and free ROM allowed
thereafter. | RR | 4.47(1.05,18.98) | Rehabilitation | | Lind, 2013 | Moderate | Failed Healing (Non-healed
menisci at second-look
arthroscopy) | 2 yrs | Restricted Rehabilitation w/ Bracing: 6 weeks of hinged brace use with a gradual increase ROM to 90 degrees and only touch weightbearing during the 6 weeks. | Rehabilitation: 2 weeks range of motion, 0 - 90 degrees, no brace, and touch weightbearing, with unrestricted activity and free ROM allowed thereafter. | RR | 1.26(0.62,2.54) | NS | Table 61: Rehabilitation Type vs. Rehabilitation Type - Composite | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|--------------------|----------|--|---|--------------------|---------------------------|----------------------| | Chen,
2022 | Low | IKDC | 1.5 mos | Aquatic Training: 3x per week, continuous water aerobic routine, 32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program, 32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | 2.1 (-5.37,
9.57) | NS | | Chen,
2022 | Low | IKDC | 3 mos | Aquatic Training: 3x per week, continuous water aerobic routine, 32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program, 32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | 9.6 (1.08,
18.12) | Aquatic
Training | | Chen,
2022 | Low | IKDC | 6 mos | Aquatic Training: 3x per week, continuous water aerobic routine, 32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program, 32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | -2.3 (-
8.52,
3.92) | NS | | Lind, 2013 | Moderate | KOOS
Symptoms | 1 yrs | Restricted Rehabilitation w/ Bracing: 6 weeks of hinged brace use with a gradual increase ROM to 90 degrees and only touch weightbearing during the 6 weeks. | Rehabilitation: 2 weeks range of motion, 0 - 90 degrees, no brace, and touch weightbearing, with unrestricted activity and free ROM allowed thereafter. | Mean
Difference | 4 (-4.66,
12.66) | NS | | Lind, 2013 | Moderate | KOOS
Symptoms | 2 yrs | Restricted Rehabilitation w/ Bracing: 6 weeks of hinged brace use with a gradual increase ROM to 90 degrees and only touch weightbearing during the 6 weeks. | Rehabilitation: 2 weeks range of motion, 0 - 90 degrees, no brace, and touch weightbearing, with unrestricted activity and free ROM allowed thereafter. | Mean
Difference | -6 (-
14.47,
2.47) | NS | Table 62: Rehabilitation Type vs. Rehabilitation Type - Function | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|---------|----------------------------|----------|--|--|--------------------|-------------------------------|-----------------------| | Chen,
2022 | Low | Flexion (Degree) | 1.5 mos | Aquatic Training: 3x per week, continuous water aerobic routine, 32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program, 32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | 1.9 (-2.07,
5.87) | NS | | Chen,
2022 | Low | Flexion (Degree) | 3 mos | Aquatic Training: 3x per week, continuous water aerobic routine,
32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program,
32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | -11.4 (-
14.42, -
8.38) | Bicycling
Training | | Chen,
2022 | Low | Flexion (Degree) | 6 mos | Aquatic Training: 3x per week, continuous water aerobic routine, 32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program, 32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | 0.1 (-1.78,
1.98) | NS | | Chen,
2022 | Low | Extension (Degree) | 1.5 mos | Aquatic Training: 3x per week, continuous water aerobic routine, 32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program, 32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | 1.1 (-0.57,
2.77) | NS | | Chen,
2022 | Low | Extension (Degree) | 3 mos | Aquatic Training: 3x per week, continuous water aerobic routine, 32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program, 32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | 3.7 (3.29,
4.11) | Aquatic
Training | | Chen,
2022 | Low | Extension (Degree) | 6 mos | Aquatic Training: 3x per week, continuous water aerobic routine, 32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program, 32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | 0.4 (0.02,
0.78) | Aquatic
Training | | Chen,
2022 | Low | 60 degrees/s
extension | 3 mos | Aquatic Training: 3x per week, continuous water aerobic routine,
32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program,
32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | -21.8 (-
44.80,
1.20) | NS | | Chen,
2022 | Low | 60 degrees/s
extension | 6 mos | Aquatic Training: 3x per week, continuous water aerobic routine,
32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program,
32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | -8.1 (-
33.69,
17.49) | NS | | Chen,
2022 | Low | 60 degrees/s flexion | 3 mos | Aquatic Training: 3x per week, continuous water aerobic routine,
32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program,
32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | -12.3 (-
26.43,
1.83) | NS | | Chen,
2022 | Low | 60 degrees/s flexion | 6 mos | Aquatic Training: 3x per week, continuous water aerobic routine,
32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program,
32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | -4.1 (-
16.53,
8.33) | NS | | Chen,
2022 | Low | 180 degrees/s
extension | 3 mos | Aquatic Training: 3x per week, continuous water aerobic routine,
32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program,
32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | -6.3 (-
25.26,
12.66) | NS | | Chen,
2022 | Low | 180 degrees/s
extension | 6 mos | Aquatic Training: 3x per week, continuous water aerobic routine,
32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program,
32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | -3.5 (-
20.11,
13.11) | NS | | Chen,
2022 | Low | 180 degrees/s
flexion | 3 mos | Aquatic Training: 3x per week, continuous water aerobic routine,
32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program, 32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | -8.1 (-
15.94, -
0.26) | Bicycling
Training | | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|-----------------------------------|----------|--|---|--------------------|----------------------------|----------------------| | Chen,
2022 | Low | 180 degrees/s
flexion | 6 mos | Aquatic Training: 3x per week, continuous water aerobic routine,
32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program,
32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | -5.4 (-
12.43,
1.63) | NS | | Chen,
2022 | Low | Y-Balance Test
(Anterior) | 3 mos | Aquatic Training: 3x per week, continuous water aerobic routine, 32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program, 32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | 9.9 (4.00,
15.80) | Aquatic
Training | | Chen,
2022 | Low | Y-Balance Test
(Anterior) | 6 mos | Aquatic Training: 3x per week, continuous water aerobic routine, 32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per
week, continuous bicycling program, 32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | 0.8 (-5.86,
7.46) | NS | | Chen,
2022 | Low | Y-Balance Test
(Posteromedial) | 3 mos | Aquatic Training: 3x per week, continuous water aerobic routine, 32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program, 32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | 11.1 (3.50,
18.70) | Aquatic
Training | | Chen,
2022 | Low | Y-Balance Test
(Posteromedial) | 6 mos | Aquatic Training: 3x per week, continuous water aerobic routine, 32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program, 32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | 7.6 (0.15,
15.05) | Aquatic
Training | | Chen,
2022 | Low | Y-Balance Test
(Posteromedial) | 3 mos | Aquatic Training: 3x per week, continuous water aerobic routine, 32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program, 32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | 12.3 (6.14,
18.46) | Aquatic
Training | | Chen,
2022 | Low | Y-Balance Test
(Posteromedial) | 6 mos | Aquatic Training: 3x per week, continuous water aerobic routine, 32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program, 32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | 2.5 (-4.51,
9.51) | NS | | Chen,
2022 | Low | Y-Balance Test | 3 mos | Aquatic Training: 3x per week, continuous water aerobic routine, 32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program, 32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | 13.6 (7.43,
19.77) | Aquatic
Training | | Chen,
2022 | Low | Y-Balance Test | 6 mos | Aquatic Training: 3x per week, continuous water aerobic routine, 32 minutes each session, from 6-24 weeks after surgery | Bicycling Training: 3x per week, continuous bicycling program, 32 minutes each session, from 6-24 weeks after surgery | Mean
Difference | 3.4 (-2.86,
9.66) | NS | | Lind, 2013 | Moderate | KOOS ADL | 1 yrs | Restricted Rehabilitation w/ Bracing: 6 weeks of hinged brace use with a gradual increase ROM to 90 degrees and only touch weightbearing during the 6 weeks. | Rehabilitation: 2 weeks range of motion, 0 - 90 degrees, no brace, and touch weightbearing, with unrestricted activity and free ROM allowed thereafter. | Mean
Difference | -1 (-8.06,
6.06) | NS | | Lind, 2013 | Moderate | KOOS ADL | 2 yrs | Restricted Rehabilitation w/ Bracing: 6 weeks of hinged brace use with a gradual increase ROM to 90 degrees and only touch weightbearing during the 6 weeks. | Rehabilitation: 2 weeks range of motion, 0 - 90 degrees, no brace, and touch weightbearing, with unrestricted activity and free ROM allowed thereafter. | Mean
Difference | -2 (-8.00,
4.00) | NS | | Lind, 2013 | Moderate | KOOS Sports/Rec | 1 yrs | Restricted Rehabilitation w/ Bracing: 6 weeks of hinged brace use with a gradual increase ROM to 90 degrees and only touch weightbearing during the 6 weeks. | Rehabilitation: 2 weeks range of motion, 0 - 90 degrees, no brace, and touch weightbearing, with unrestricted activity and free ROM allowed thereafter. | Mean
Difference | -4 (-21.84,
13.84) | NS | | Lind, 2013 | Moderate | KOOS Sports/Rec | 2 yrs | Restricted Rehabilitation w/ Bracing: 6 weeks of hinged brace use with a gradual increase ROM to 90 degrees and only touch weightbearing during the 6 weeks. | Rehabilitation: 2 weeks range of motion, 0 - 90 degrees, no brace, and touch weightbearing, with unrestricted activity and free ROM allowed thereafter. | Mean
Difference | -9 (-22.82,
4.82) | NS | | Lind, 2013 | Moderate | Tegner Score | 1 yrs | Restricted Rehabilitation w/ Bracing: 6 weeks of hinged brace use with a gradual increase ROM to 90 degrees and only touch weightbearing during the 6 weeks. | Rehabilitation: 2 weeks range of motion, 0 - 90 degrees, no brace, and touch weightbearing, with unrestricted activity and free ROM allowed thereafter. | Mean
Difference | 0.3 (-0.79,
1.39) | NS | | Lind, 2013 | Moderate | Tegner Score | 2 yrs | Restricted Rehabilitation w/ Bracing: 6 weeks of hinged brace use with a gradual increase ROM to 90 degrees and only touch weightbearing during the 6 weeks. | Rehabilitation: 2 weeks range of motion, 0 - 90 degrees, no brace, and touch weightbearing, with unrestricted activity and free ROM allowed thereafter. | Mean
Difference | -0.4 (-1.53,
0.73) | NS | Table 63: Rehabilitation Type vs. Rehabilitation Type - Pain | Reference
Title | Quality | Outcome
Details | Duration | Treatme
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|--------------------|----------|--|---|--------------------|-----------------------|----------------------| | Lind, 2013 | Moderate | KOOS
Pain | 1 yrs | Restricted Rehabilitation w/ Bracing: 6 weeks of hinged brace use with a gradual increase ROM to 90 degrees and only touch weightbearing during the 6 weeks. | Rehabilitation: 2 weeks range of motion, 0 - 90 degrees, no brace, and touch weightbearing, with unrestricted activity and free ROM allowed thereafter. | Mean
Difference | 0 (-10.19,
10.19) | NS | | Lind, 2013 | Moderate | KOOS
Pain | 2 yrs | Restricted Rehabilitation w/ Bracing: 6 weeks of hinged brace use with a gradual increase ROM to 90 degrees and only touch weightbearing during the 6 weeks. | Rehabilitation: 2 weeks range of motion, 0 - 90 degrees, no brace, and touch weightbearing, with unrestricted activity and free ROM allowed thereafter. | Mean
Difference | -5 (-13.00,
3.00) | NS | Table 64: Rehabilitation Type vs. Rehabilitation Type - QOL | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|--------------------|----------|--|---|--------------------|-----------------------|----------------------| | Lind, 2013 | Moderate | KOOS
QOL | 1 yrs | Restricted Rehabilitation w/ Bracing: 6 weeks of hinged brace use with a gradual increase ROM to 90 degrees and only touch weightbearing during the 6 weeks. | Rehabilitation: 2 weeks range of motion, 0 - 90 degrees, no brace, and touch weightbearing, with unrestricted activity and free ROM allowed thereafter. | Mean
Difference | 3 (-12.09,
18.09) | NS | | Lind, 2013 | Moderate | KOOS
QOL | 2 yrs | Restricted Rehabilitation w/ Bracing: 6 weeks of hinged brace use with a gradual increase ROM to 90 degrees and only touch weightbearing during the 6 weeks. | Rehabilitation: 2 weeks range of motion, 0 - 90 degrees, no brace, and touch weightbearing, with unrestricted activity and free ROM allowed thereafter. | Mean
Difference | 1 (-12.58,
14.58) | NS | Figure 20: Insole vs. Control – Summary of Findings | | <u> </u> | |-------------------|----------------| | | Moderate | | | Dammerer, 2019 | | ↑ Better Outcomes | nerer, | | ↓ Worse Outcomes | E | | Not Significant | Da | | Composite | | | IKDC | | | KOOS Symptoms | | | Function | | | KOOS ADL | • | | KOOS Sports/Rec | 1 | | SF-12 Physical | | | MARX | | | Pain | | | KOOS Pain | 1 | | QOL | | | KOOS QOL | 1 | | SF-12 Mental | • | Table 65: Insole vs. Control - Composite | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment
2
(Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|--------------------|----------|---|-----------------------------|-------------------|-----------------------|----------------------| | Dammerer, 2019 | Moderate | IKDC | 1.5 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks $$ | Control | Mean Difference | -0.6 (-11.04, 9.84) | NS | | Dammerer, 2019 | Moderate | IKDC | 3 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks $$ | Control | Mean Difference | -7.4 (-19.23, 4.43) | NS | | Dammerer, 2019 | Moderate | IKDC | 6 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | 4.2 (-7.44, 15.84) | NS | | Dammerer, 2019 | Moderate | IKDC | 1 yrs | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks $$ | Control | Mean Difference | 8.7 (-2.85, 20.25) | NS | | Dammerer, 2019 | Moderate | KOOS Symptoms | 1.5 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks $$ | Control | Mean Difference | 5.6 (-5.62, 16.82) | NS | | Dammerer, 2019 | Moderate | KOOS Symptoms | 3 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks $$ | Control | Mean Difference | -2.2 (-13.46, 9.06) | NS | | Dammerer, 2019 | Moderate | KOOS Symptoms | 6 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks
| Control | Mean Difference | 4 (-6.16, 14.16) | NS | | Dammerer, 2019 | Moderate | KOOS Symptoms | 1 yrs | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks $$ | Control | Mean Difference | 4.9 (-7.84, 17.64) | NS | Table 66: Insole vs. Control - Function | Reference
Title | Quality | Outcome
Details | Duration | Treatment T 1 (Details) | | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|--------------------|----------|---|---------|-------------------|------------------------|----------------------| | Dammerer, 2019 | Moderate | SF-12 Physical | 1.5 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | -2.5 (-9.50, 4.50) | NS | | Dammerer, 2019 | Moderate | SF-12 Physical | 3 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | -4.3 (-10.31, 1.71) | NS | | Dammerer, 2019 | Moderate | SF-12 Physical | 6 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | 1.8 (-4.04, 7.64) | NS | | Dammerer, 2019 | Moderate | SF-12 Physical | 1 yrs | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | 1.4 (-5.17, 7.97) | NS | | Dammerer, 2019 | Moderate | MARX | 1.5 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | 0 (-1.36, 1.36) | NS | | Dammerer, 2019 | Moderate | MARX | 3 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | -1.4 (-3.87, 1.07) | NS | | Dammerer, 2019 | Moderate | MARX | 6 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | -0.6 (-2.55, 1.35) | NS | | Dammerer, 2019 | Moderate | MARX | 1 yrs | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | 0.3 (-1.73, 2.33) | NS | | Dammerer, 2019 | Moderate | KOOS ADL | 1.5 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | 4.4 (-6.60, 15.40) | NS | | Dammerer, 2019 | Moderate | KOOS ADL | 3 mos | Insole Grousoup: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | -31.3 (-45.83, -16.77) | Control | | Dammerer, 2019 | Moderate | KOOS ADL | 6 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | -24.7 (-38.84, -10.56) | Control | | Dammerer, 2019 | Moderate | KOOS ADL | 1 yrs | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | -8.6 (-23.87, 6.67) | NS | | Reference
Title | Quality | Outcome
Details | Duration | Treatment Ti 1 (Details) (| | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|--------------------|----------|--|---------|-------------------|-----------------------|----------------------| | Dammerer, 2019 | Moderate | KOOS Sports/Rec | 1.5 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | 17.6 (0.54, 34.66) | Insole Group | | Dammerer, 2019 | Moderate | KOOS Sports/Rec | 3 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | -6.7 (-23.12, 9.72) | NS | | Dammerer, 2019 | Moderate | KOOS Sports/Rec | 6 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | 12.7 (-4.18, 29.58) | NS | | Dammerer, 2019 | Moderate | KOOS Sports/Rec | 1 yrs | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | 14 (-3.89, 31.89) | NS | Table 67: Insole vs. Control - Pain | Reference
Title | Quality | Outcome
Details | Duration | Treatment 1 (Details) | | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|--------------------|----------|--|---------|-------------------|-----------------------|----------------------| | Dammerer, 2019 | Moderate | KOOS Pain | 1.5 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | 10.8 (0.12, 21.48) | Insole Group | | Dammerer, 2019 | Moderate | KOOS Pain | 3 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | -0.3 (-12.04, 11.44) | NS | | Dammerer, 2019 | Moderate | KOOS Pain | 6 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | 0 (-11.94, 11.94) | NS | | Dammerer, 2019 | Moderate | KOOS Pain | 1 yrs | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean Difference | 8.4 (-4.48, 21.28) | NS | Table 68: Insole vs. Control - QOL | Reference
Title | Quality | Outcome
Details | Duration | Treatment
1
(Details) | Treatment 2 (Details) | Effect
Measure | Result
(95%
CI) | Favored
Treatment | |--------------------|----------|--------------------|----------|--|-----------------------|--------------------|-------------------------|----------------------| | Dammerer,
2019 | Moderate | SF-12
Mental | 1.5 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean
Difference | -4.3 (-10.53, 1.93) | NS | | Dammerer,
2019 | Moderate | SF-12
Mental | 3 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean
Difference | -6 (-11.52, -0.48) | Control | | Dammerer,
2019 | Moderate | SF-12
Mental | 6 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean
Difference | -4.1 (-9.11, 0.91) | NS | | Dammerer,
2019 | Moderate | SF-12
Mental | 1 yrs | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean
Difference | 2.3 (-2.70, 7.30) | NS | | Dammerer,
2019 | Moderate | KOOS QOL | 1.5 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean
Difference | 3.4 (-10.66, 17.46) | NS | | Dammerer,
2019 | Moderate | KOOS QOL | 3 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean
Difference | 0.4 (-15.22, 16.02) | NS | | Dammerer,
2019 | Moderate | KOOS QOL | 6 mos | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean
Difference | 12.7 (-19.76,
45.16) | NS | | Dammerer,
2019 | Moderate | KOOS QOL | 1 yrs | Insole Group: lateral wedge insole worn for a minimum of 5h a day for 12 weeks | Control | Mean
Difference | 16.7 (0.27, 33.13) | Insole
Group | ### PICO 15: Meniscal Augmentation No included evidence ## Meta Analyses ## Likelihood Threshold Key | Positive
Likelihood
Ratio | Negative
Likelihood Ratio | Test
strength | Interpretation | | | |---------------------------------|------------------------------|------------------|---|--|--| | ≥10 | ≤0.1 | Strong | Large and conclusive change in probability of tear | | | | ≥5 but <10 | >0.1 but <u><</u> 0.2 | Moderate | Moderate change in probability of tear | | | | >2 and <5 | >0.2 but <0.5 | Weak | Small (but sometimes important) change in probability of tear | | | | ≤2 | <u>≥</u> 0.5 | Poor | Small (and rarely important) change in probability of tear | | | # PICO 1 McMurray Test- Statistics (Medial Meniscus) Parameter: Estimate [95% CI] Sensitivity: 0.74 [0.39, 0.93] Specificity: 0.76 [0.42, 0.93] Positive Likelihood Ratio: 3.1 [1.1, 8.8] (Weak) Negative Likelihood Ratio: 0.34 [0.12, 0.96] (Weak) Diagnostic Odds Ratio: 9 [2, 48] Figure 4 McMurray Test- Positive and Negative Likelihood Ratios (Medial Meniscus) Figure 5 McMurray Test- ROC Curves (Medial Meniscus) ## McMurray Test- Statistics (Lateral Meniscus) | <u> </u> | CI | |----------|---------| | E | e [95% | Sensitivity: 0.61 [0.30, 0.86] Specificity: 0.89 [0.58, 0.98] Positive Likelihood Ratio: 5.7 [1.2, 26.5] (Moderate) Negative Likelihood Ratio: 0.43 [0.20, 0.95] (Weak) Diagnostic Odds Ratio: 13 [2, 89] Figure 6 McMurray Test- Positive and Negative Likelihood Ratios (Lateral Meniscus) Figure 7 McMurray Test- ROC Curves (Lateral Meniscus) ## PICO 2 MRI General Statistics – using arthroscopy as a reference standard Parameter: Estimate [95% CI] Sensitivity: Specificity: 0.83 [0.45, 0.97] Positive Likelihood Ratio: 5.5 [1.4, 21.9] (Moderate) Negative Likelihood Ratio: 0.08 [0.02, 0.34] (Poor) Diagnostic Odds Ratio: 68 [16,289] Figure 8 MRI General positive and negative likelihood ratios – using arthroscopy as a reference standard Figure 9 MRI General ROC curves – using arthroscopy as a reference standard ## MRI medial tear statistics Parameter: Estimate [95% CI] Sensitivity: 0.94[0.89, 0.97] Specificity: 0.78[0.66, 0.86] Positive Likelihood Ratio: 4.2[2.7, 6.6] (Weak) Negative Likelihood Ratio: 0.08[0.04, 0.15] (Poor) Diagnostic Odds Ratio: 55[24, 125] Figure 10 MRI medial tear pooled positive and negative likelihood ratios Figure 11 MRI medial tear ROC curve Parameter: Estimate [95% CI] Sensitivity: 0.80 [0.70, 0.87] Specificity: 0.94 [0.86,0.97] Positive Likelihood Ratio: 13.3 [5.5,32.1] (Strong) Negative Likelihood Ratio: 0.22[0.14, 0.34] (Weak) Diagnostic Odds Ratio: 61[20, 191] Figure 12 MRI lateral tear pooled positive and
negative likelihood ratios – sensitivity analysis 1 using 2d MRI observation from Araki 1992 study Figure 13 MRI lateral tear ROC curve – sensitivity analysis 1 using 2d MRI observation from Araki 1992 study Parameter: Estimate [95% CI] Sensitivity: 0.83 [0.72, 0.90] Specificity: 0.94 [0.86, 0.98] Positive Likelihood Ratio: 13.9 [5.7, 34.2] (Strong) Negative Likelihood Ratio: 0.18 [0.11, 0.32] (Moderate) Diagnostic Odds Ratio: 75 [21, 267] Figure 14 MRI lateral tear pooled positive and negative likelihood ratios – sensitivity analysis 2 using 3d MRI observation from Araki 1992 study Figure 15 MRI lateral tear ROC curve – sensitivity analysis 2 using 3d MRI observation from Araki 1992 study ## PICO 4 Bracing - KOOS Pain 1 yr FU Lind: Restricted Rehabilitation with Bracing Dammerer: Bracing